Abstract

Output-only modal analysis (OMA) is an indispensable alternative to experimental modal analysis for engineering structures while in operation. Conventional OMA often fails to identify the underlying modal structure with insufficient modal energy contribution. Such low modal participation is expected when the sampled response is subjected to sensor nonlinearity or when specific modes are not directly excited. A novel subband decomposition (SBD) method that resolves modal parameters even with biased modal energy distribution is proposed. It isolates the system response within a narrow frequency subband through a finite impulse response analysis filter bank. Whenever the filter subband captures a resonance, the filtered system response is close-to-singular and contains mainly the resonant mode contribution. A modal cluster metric is defined to identify the resonant normal modes automatically. The modal parameters are also identified and extracted within the subband possessing the locally maximal clustering measure. The proposed method assumes no a priori knowledge of the structure under operation other than the system should have any repeated natural frequencies. Therefore, the SBD algorithm is entirely data-driven and requires minimal user intervention. To illustrate the concept and the accuracy of the proposed SBD, numerical experiments of a linear cantilevered beam with various stationary and non-stationary loading are conducted and compared to other OMA methods. Furthermore, physical experiments on an aluminum cantilever beam examine the method’s applicability in field modal testing. Compared to traditional OMA methods, the numerical and physical experiments show orders of magnitude improvement in modal identification error using the proposed SBD.

References

1.
Ewins
,
D. J.
,
2009
,
Modal Testing: Theory, Practice and Application
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1
18
.
2.
Felber
,
A. J.
,
1994
, “
Development of a Hybrid Bridge Evaluation System
,”
Ph.D. dissertation
,
University of British Columbia
, pp.
53
55
.
3.
Schwarz
,
B.
, and
Richardson
,
M.
,
2001
, “
Modal Parameter Estimation From Ambient Response Data
,”
Proceedings of IMAC 19
,
Orlando, FL
,
Feb. 5–8
,
4.
Ozdemir
,
A. A.
, and
Gumussoy
,
S.
,
2017
, “
Transfer Function Estimation in System Identification Toolbox Via Vector Fitting
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
6232
6237
.
5.
Sen
,
D.
,
Erazo
,
K.
,
Nagarajaiah
,
S.
, and
Sun
,
L.
,
2019
, “
On the Effectiveness of Principal Component Analysis for Decoupling Structural Damage and Environmental Effects in Bridge Structures
,”
J. Sound Vib.
,
457
, pp.
280
298
.
6.
Banan
,
M.
, and
Mehdi-Pour
,
Y.
,
2007
, “
Detection and Assessment of Damage in 2D Structures Using Measured Modal Response
,”
J. Sound Vib.
,
306
(
3–5)
, pp.
803
817
.
7.
Bendat
,
J.
, and
Piersol
,
A.
,
1993
,
Engineering Applications of Correlation and Spectral Analysis
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
196
202
.
8.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
,
2000
, “
Modal Identification From Ambient Responses Using Frequency Domain Decomposition
,”
Proceedings of the 18th International Modal Analysis Conference (IMAC)
, Vol.
1
,
San Antonio, TX
,
Feb. 7–10
, pp.
625
630
.
9.
Brincker
,
R.
,
Andersen
,
P.
, and
Jacobsen
,
N.-J.
,
2007
, “
Automated Frequency Domain Decomposition for Operational Modal Analysis
,”
Conference Proceedings: IMAC-XXIV: A Conference & Exposition on Structural Dynamics
,
St. Louis, MO
,
Jan. 30–Feb. 2
,
Society for Experimental Mechanics
.
10.
Juang
,
J.-N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
620
627
.
11.
De Callafon
,
R. A.
,
Moaveni
,
B.
,
Conte
,
J. P.
,
He
,
X.
, and
Udd
,
E.
,
2008
, “
General Realization Algorithm for Modal Identification of Linear Dynamic Systems
,”
J. Eng. Mech.
,
134
(
9
), pp.
712
722
.
12.
Kerschen
,
G.
,
Golinval
,
J.-C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
147
169
.
13.
Chelidze
,
D.
, and
Zhou
,
W.
,
2006
, “
Smooth Orthogonal Decomposition Based Vibration Mode Identification
,”
J. Sound Vib.
,
292
(
3–5
), pp.
461
473
.
14.
Han
,
S.
, and
Feeny
,
B.
,
2003
, “
Application of Proper Orthogonal Decomposition to Structural Vibration Analysis
,”
Mech. Syst. Signal Process
,
17
(
5
) pp.
989
1001
.
15.
Kim
,
B. H.
,
Stubbs
,
N.
, and
Park
,
T.
,
2005
, “
A New Method to Extract Modal Parameters Using Output-Only Responses
,”
J. Sound Vib.
,
282
(
1–2)
, pp.
215
230
.
16.
Holguín-Londoño
,
M.
,
Cardona-Morales
,
O.
,
Sierra-Alonso
,
E. F.
,
Mejia-Henao
,
J. D.
,
Orozco-Gutiérrez
,
Á.
, and
Castellanos-Dominguez
,
G.
,
2016
, “
Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis
,”
Math. Probl. Eng.
,
2016
, p.
7906834
.
17.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
18.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications– Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
19.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2013
,
Matrix Computations
,
JHU Press
, pp.
465
467
.
20.
MathWorks, Inc.
,
2022
, “
Generalized Singular Value Decomposition
,” https://www.mathworks.com/help/matlab/ref/gsvd.html, Accessed May 19, 2022.
21.
Feeny
,
B.
, and
Farooq
,
U.
,
2008
, “
A Nonsymmetric State-Variable Decomposition for Modal Analysis
,”
J. Sound Vib.
,
310
(
4–5
), pp.
792
800
.
22.
Zhou
,
W.
, and
Chelidze
,
D.
,
2008
, “
Generalized Eigenvalue Decomposition in Time Domain Modal Parameter Identification
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011001
.
23.
Farooq
,
U.
, and
Feeny
,
B. F.
,
2012
, “
An Experimental Investigation of State-Variable Modal Decomposition for Modal Analysis
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021017
.
24.
Brincker
,
R.
, and
Ventura
,
C.
,
2015
,
Introduction to Operational Modal Analysis
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
251
254
.
25.
Mohanty
,
P.
, and
Rixen
,
D. J.
,
2006
, “
Modified Era Method for Operational Modal Analysis in the Presence of Harmonic Excitations
,”
Mech. Syst. Signal Process
,
20
(
1
), pp.
114
130
.
26.
Clough
,
R.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
McGraw-Hill
,
New York
, p.
224
.
27.
Ifeachor
,
E. C.
, and
Jervis
,
B. W.
,
1993
,
Digital Signal Processing: A Practical Approach
,
Pearson Education Limited
, pp.
349
366
.
28.
Feeny
,
B.
,
2002
, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
157
160
.
29.
Schwarz
,
B. J.
, and
Richardson
,
M. H.
,
1999
, “
Experimental Modal Analysis
,”
Proceedings of CSI Reliability Week
,
Orlando, FL
,
Oct. 4
.
You do not currently have access to this content.