Abstract

The Inductrack system provides a novel way to achieve magnetic levitation by using Halbach arrays of permanent magnets (PMs). Due to the complexities of the nonlinear electro-magneto-mechanical coupling in the system, most previous analyses of the Inductrack system rely on steady-state results and consequently cannot fully capture the dynamic behaviors of the system in transient scenarios. In this article, a new three degrees-of-freedom (3DOF) transient model of the Inductrack system is proposed. This model describes the rigid-body motion of the Inductrack vehicle with axial (longitudinal) and vertical (transverse) displacements and pitch rotation, and it is derived without any assumption of steady-state quantities. Compared to a recently available 2DOF lumped-mass model developed by the authors, the inclusion of the pitch rotation in the new model results in a much more complicated mechanism of electro-magneto-mechanical coupling. Numerical results show that the pitch rotation can have a significant effect on the dynamic response and stability of the Inductrack system, which necessities vibration control for the safe operation of the Inductrack system.

References

1.
Lee
,
H. W.
,
Kim
,
K. C.
, and
Lee
,
J.
,
2006
, “
Review of Maglev Train Technologies
,”
IEEE Trans. Magn.
,
42
(
7
), pp.
1917
1925
.
2.
Liu
,
Z.
,
Long
,
Z.
, and
Li
,
X.
,
2015
, “Maglev Trains,”
Springer Tracts in Mechanical Engineering
,
S.
Choi
,
H.
Duan
,
Y.
Fu
, and
J.
Sun
, eds.,
Springer-Verlag
,
Berlin/Heidelberg.
3.
Han
,
H. S.
, and
Kim
,
D. S.
,
2016
, “Magnetic Levitation,”
Springer Tracts on Transportation and Traffic
,
R. P.
Roess
, ed.,
Springer Science+Business Media
,
Dordrecht
.
4.
Schmid
,
P.
,
Schneider
,
G.
,
Dignath
,
F.
,
Liang
,
X.
, and
Eberhard
,
P.
,
2020
, “
Static and Dynamic Modeling of the Electromagnets of the Maglev Vehicle Transrapid
,”
IEEE Trans. Magn.
,
57
(
2
), pp.
1
15
.
5.
Sun
,
Y.
,
Xu
,
J.
,
Qiang
,
H.
,
Wang
,
W.
, and
Lin
,
G.
,
2019
, “
Hopf Bifurcation Analysis of Maglev Vehicle-Guideway Interaction Vibration System and Stability Control Based on Fuzzy Adaptive Theory
,”
Comput. Ind.
,
108
, pp.
197
209
.
6.
Sun
,
Y.
,
Xu
,
J.
,
Lin
,
G.
,
Ji
,
W.
, and
Wang
,
L.
,
2020
, “
RBF Neural Network-Based Supervisor Control for Maglev Vehicles on an Elastic Track With Network Time Delay
,”
IEEE Trans. Ind. Inf.
,
18
(
1
), pp.
509
519
.
7.
Post
,
R. F.
, and
Ryutov
,
D. D.
,
1996
, “
The Inductrack Concept: A New Approach to Magnetic Levitation
,” LLNL Report No. UCRL-ID-124115.
8.
Halbach
,
K.
,
1981
, “
Physical and Optical Properties of Rare Earth Cobalt Magnets
,”
Nucl. Instrum. Methods Phys. Res.
,
187
(
1
), pp.
109
117
.
9.
Gurol
,
S.
,
Baldi
,
B.
, and
Post
,
R. F.
,
2002
, “
Overview of the General Atomics Low Speed Urban Maglev Technology Development Program
,”
Proceedings of the 17th International Conference on Magnetically Levitated Systems and Linear Drives
,
Lausanne, Switzerland
,
Sept. 3
.
10.
Rohacs
,
D.
, and
Rohacs
,
J.
,
2016
, “
Magnetic Levitation Assisted Aircraft Take-Off and Landing (Feasibility Study–GABRIEL Concept)
,”
Prog. Aerosp. Sci.
,
85
, pp.
33
50
.
11.
Tung
,
L. S.
,
Post
,
R. F.
, and
Martinez-Frias
,
J.
,
2001
, “
Final Progress Report for the NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory
,” LLNL Report No. UCRL-ID-144455.
12.
Bermudez
,
J. L.
,
Zanolli
,
S.
,
Sandtner
,
J.
,
Bleuler
,
H.
, and
Benabderrahmane
,
C.
,
2000
, “
Preliminary Experiments on an Eddy Currents Bearing
,”
Proceedings of the 7th International Symposium on Magnetic Bearings
,
Zürich, Switzerland
,
Aug. 23–25
, p.
135
.
13.
Smith
,
D.
,
2016
, “
The Fifth Mode
,”
Constr. Res. Innov.
,
7
(
1
), pp.
12
15
.
14.
Murai
,
T.
, and
Hasegawa
,
H.
,
2003
, “
Electromagnetic Analysis of Inductrack Magnetic Levitation
,”
Electr. Eng. Jpn.
,
142
(
1
), pp.
67
74
.
15.
Han
,
Q.
,
Ham
,
C.
, and
Phillips
,
R.
,
2005
, “
Four- and Eight-Piece Halbach Array Analysis and Geometry Optimisation for Maglev
,”
IEE Proc. Electr. Power Appl.
,
152
(
3
), pp.
535
542
.
16.
Ham
,
C.
,
Ko
,
W.
, and
Han
,
Q.
,
2006
, “
Analysis and Optimization of a Maglev System Based on the Halbach Magnet Arrays
,”
J. Appl. Phys.
,
99
(
8
), p.
08P510
.
17.
Iniguez
,
J.
, and
Raposo
,
V.
,
2009
, “
Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array
,”
Eur. J. Phys.
,
30
(
2
), pp.
367
379
.
18.
Iniguez
,
J.
, and
Raposo
,
V.
,
2010
, “
Numerical Simulation of a Simple Low-Speed Model for an Electrodynamic Levitation System Based on a Halbach Magnet Array
,”
J. Magn. Magn. Mater.
,
322
(
9–12
), pp.
1673
1676
.
19.
Cho
,
H. W.
,
Han
,
H. S.
,
Bang
,
J. S.
,
Sung
,
H. K.
, and
Kim
,
B. H.
,
2009
, “
Characteristic Analysis of Electrodynamic Suspension Device With Permanent Magnet Halbach Array
,”
J. Appl. Phys.
,
105
(
7
), p.
07A314
.
20.
Ham
,
C.
,
Ko
,
W.
,
Lin
,
K. C.
, and
Joo
,
Y.
,
2013
, “
Study of a Hybrid Magnet Array for an Electrodynamic Maglev Control
,”
J. Magn.
,
18
(
3
), pp.
370
374
.
21.
Flankl
,
M.
,
Wellerdieck
,
T.
,
Tuysuz
,
A.
, and
Kolar
,
J. W.
,
2017
, “
Scaling Laws for Electrodynamic Suspension in High-Speed Transportation
,”
IET Electr. Power Appl.
,
12
(
3
), pp.
357
364
.
22.
Han
,
Q.
,
2004
, “
Analysis and Modeling of the EDS Maglev System Based on the Halbach Permanent Magnet Array
,”
Ph.D. dissertation
,
University of Central Florida
,
Orlando, FL
.
23.
Kim
,
N. H.
, and
Ge
,
L.
,
2008
, “
Modeling of Electrodynamic Suspension Systems
,”
Proceedings of the ASME 2006 IDETC/CIE Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
667
676
.
24.
Kim
,
N. H.
, and
Ge
,
L.
,
2013
, “
Dynamic Modeling of Electromagnetic Suspension System
,”
J. Vib. Control
,
19
(
5
), pp.
729
741
.
25.
Ko
,
W.
,
2007
, “
Modeling and Analysis of the EDS Maglev System With the Halbach Magnet Array
,”
Ph.D. dissertation
,
University of Central Florida
,
Orlando, FL
.
26.
Long
,
Z.
,
He
,
G.
, and
Xue
,
S.
,
2011
, “
Study of EDS & EMS Hybrid Suspension System With Permanent-Magnet Halbach Array
,”
IEEE Trans. Magn.
,
47
(
12
), pp.
4717
4724
.
27.
Buth
,
B.
, and
Lu
,
B.
,
2012
, “
Dynamic Analysis of Vehicle-Guideway Interaction in a Maglev Cargo Transportation System
,”
Proceedings of the ASME 2012 IMECE Conference
,
Houston, TX
,
Nov. 9–15
, pp.
1
8
.
28.
Pradhan
,
R.
, and
Katyayan
,
A.
,
2018
, “
Vehicle Dynamics of Permanent-Magnet Levitation Based Hyperloop Capsules
,”
Proceedings of the ASME 2018 DSCC Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, pp.
1
13
.
29.
Storset
,
O. F.
, and
Paden
,
B. E.
,
2005
, “
Discrete Track Electrodynamic Maglev Part I: Modelling
,”
IEEE Trans. Magn.
, pp.
410
447
.
30.
Storset
,
O. F.
, and
Paden
,
B. E.
,
2005
, “
Discrete Track Electrodynamic Maglev Part II: Periodic Track Model for Numerical Simulation and Lumped Parameter Model
,”
IEEE Trans. Magn.
31.
Wang
,
R.
, and
Yang
,
B.
,
2020
, “
Transient Response of Inductrack Systems for Maglev Transport: Part I—A New Transient Model
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031005
.
32.
Wang
,
R.
, and
Yang
,
B.
,
2020
, “
Transient Response of Inductrack Systems for Maglev Transport: Part II—Solution and Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031006
.
33.
Yamada
,
T.
,
Iwamoto
,
M.
, and
Ito
,
T.
,
1974
, “
Magnetic Damping Force in Inductive Magnetic Levitation System for High-Speed Trains
,”
Electr. Eng. Jpn.
,
94
(
1
), pp.
80
84
.
34.
Post
,
R. F.
,
1998
, “
Inductrack Demonstration Model
,” LLNL Report No. UCRL-ID-129664.
35.
Wang
,
R.
,
Yang
,
B.
, and
Gao
,
H.
,
2020
, “
Transient Vibration and Feedback Control of an Inductrack Maglev System
,”
Proceedings of the ASME 2020 IMECE Conference, Online
,
Nov. 16–19
.
36.
Wang
,
R.
,
Yang
,
B.
, and
Gao
,
H.
,
2021
, “
Nonlinear Feedback Control of the Inductrack System Based on a Transient Model
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
8
), p.
081003
.
37.
Wang
,
R.
,
Yang
,
B.
, and
Gao
,
H.
,
2021
, “
Nonlinear Control of a Transient Inductrack System Using State Feedback
,”
Proceedings of the ASME 2021 IDETC/CIE Conference, Online
,
Aug. 17–19
, p. V009T09A027.
38.
Gao
,
H.
, and
Yang
,
B.
,
2020
, “
Parametric Vibration of a Flexible Structure Excited by Periodic Passage of Moving Oscillators
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071001
.
39.
Mustapha
,
B. M.
, and
Bababe
,
A. B.
,
2016
, “
Propulsion of Magnetic Levitation Train
,”
Int. J. Enhanc. Res. Sci. Technol. Eng.
,
5
(
12
), pp.
44
47
.
You do not currently have access to this content.