Abstract

The ideal acoustic black hole (ABH) can achieve wave gathering and zero reflection of elastic waves. In practice, ABHs have to be truncated, limiting their application in lower frequency range. Aiming at improving the ABH beam's vibration suppression ability at low frequencies, this study proposes a shunt damping-ABH composite beam by pasting shunt damping instead of ordinary damping on the ABH tip. The energy method is employed to solve the vibration equation of the ABH beam. The admissible function is the Mexican hat wavelet. The proposed method is verified by the finite element method. Compared with the uniform beam, the numerical results show the ABH beam has a noticeable attenuating effect in high-frequency range due to the ABH effect, but almost has no attenuating effect in the low-frequency range. Therefore, we introduce shunt damping to enhance the low-frequency vibration control. The shunt damping is composed of circuits connected to a piezoelectric patch. The effects of different circuits connected to the piezoelectric patch are discussed. The R–L shunt circuit and L–C parallel blocking circuit can simultaneously suppress the multimode vibration peak of the ABH beam at the low frequency successfully. Finally, a vibration experiment of ABH beam combined with shunt damping is implemented to verify the present method's feasibility and the shunt damping effect. The proposed shunt damping-ABH composite beam could improve the suppressing ability in both the low and high-frequency ranges.

References

1.
Mironov
,
M. A.
,
1988
, “
Propagation of a Flexural Wave in a Plate Whose Thickness Decreases Smoothly to Zero in a Finite Interval
,”
Sov. Phys. Acoust.
,
34
(
3
), pp.
318
319
.
2.
Krylov
,
V. V.
, and
Shuvalov
,
A. L.
,
2000
,
Propagation of Localised Flexural Vibrations Along Plate Edges Described by a Power Law
,
Institute of Acoustics
,
Milton Keynes, UK
, pp.
263
270
.
3.
Krylov
,
V. V.
, and
Tilman
,
F. J. B. S.
,
2004
, “
Acoustic ‘Black Holes’ for Flexural Waves as Effective Vibration Dampers
,”
J. Sound Vib.
,
274
(
3–5
), pp.
605
619
.
4.
Krylov
,
V. V.
,
2004
, “
New Type of Vibration Dampers Utilising the Effect of Acoustic ‘Black Holes,’
,”
Acta Acustica United Acust.
,
90
(
5
), pp.
830
837
.
5.
Krylov
,
V. V.
,
1990
, “
Geometrical-Acoustics Approach to the Description of Localized Vibrational Modes of an Elastic Solid Wedge
,”
Am. lnst. Phys.
,
25
(
2
), pp.
137
140
.
6.
Tang
,
L.
,
Cheng
,
L.
,
Ji
,
H.
, and
Qiu
,
J.
,
2016
, “
Characterization of Acoustic Black Hole Effect Using a One-Dimensional Fully-Coupled and Wavelet-Decomposed Semi-Analytical Model
,”
J. Sound Vib.
,
374
, pp.
172
184
.
7.
Deng
,
J.
,
Guasch
,
O.
, and
Zheng
,
L.
,
2019
, “
Ring-Shaped Acoustic Black Holes for Broadband Vibration Isolation in Plates
,”
J. Sound Vib.
,
458
, pp.
109
122
.
8.
Deng
,
J.
,
Guasch
,
O.
, and
Zheng
,
L.
,
2020
, “
A Semi-Analytical Method for Characterizing Vibrations in Circular Beams With Embedded Acoustic Black Holes
,”
J. Sound Vib.
,
476
, p.
115307
.
9.
Deng
,
J.
,
Zheng
,
L.
,
Guasch
,
O.
,
Wu
,
H.
,
Zeng
,
P.
, and
Zuo
,
Y.
,
2019
, “
Gaussian Expansion for the Vibration Analysis of Plates With Multiple Acoustic Black Holes Indentations
,”
Mech. Syst. Signal Process
,
131
, pp.
317
334
.
10.
Deng
,
J.
,
Zheng
,
L.
,
Zeng
,
P.
,
Zuo
,
Y.
, and
Guasch
,
O.
,
2019
, “
Passive Constrained Viscoelastic Layers to Improve the Efficiency of Truncated Acoustic Black Holes in Beams
,”
Mech. Syst. Signal Process
,
118
, pp.
461
476
.
11.
Ma
,
L.
, and
Cheng
,
L.
,
2020
, “
Numerical and Experimental Benchmark Solutions on Vibration and Sound Radiation of an Acoustic Black Hole Plate
,”
Appl. Acoust.
,
163
, p.
107223
.
12.
Ma
,
L.
,
Zhang
,
S.
, and
Cheng
,
L.
,
2018
, “
A 2D Daubechies Wavelet Model on the Vibration of Rectangular Plates Containing Strip Indentations With a Parabolic Thickness Profile
,”
J. Sound Vib.
,
429
, pp.
130
146
.
13.
Conlon
,
S. C.
,
Fahnline
,
J. B.
, and
Semperlotti
,
F.
,
2015
, “
Numerical Analysis of the Vibroacoustic Properties of Plates With Embedded Grids of Acoustic Black Holes
,”
J. Acoust. Soc. Am.
,
137
(
1
), pp.
447
457
.
14.
Conlon
,
S. C.
,
Fahnline
,
J. B.
,
Semperlotti
,
F.
, and
Feurtado
,
P. A.
,
2014
, “
Enhancing the Low Frequency Vibration Reduction Performance of Plates With Embedded Acoustic Black Holes
,”
INTERNOISE 2014,Melbourne, Australia
, Nov.
16–19, 2014
, pp.
175
182
.
15.
Gao
,
N.
,
Wei
,
Z.
,
Hou
,
H.
, and
Krushynska
,
A. O.
,
2019
, “
Design and Experimental Investigation of V-Folded Beams With Acoustic Black Hole Indentations
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
EL79
EL83
.
16.
Lee
,
J. Y.
, and
Jeon
,
W.
,
2021
, “
Wave-Based Analysis of the Cut-on Frequency of Curved Acoustic Black Holes
,”
J. Sound Vib.
,
492
, p.
115731
.
17.
Tang
,
L.
,
Cheng
,
L.
, and
Chen
,
K.
,
2021
, “
Complete Sub-wavelength Flexural Wave Band Gaps in Plates With Periodic Acoustic Black Holes
,”
J. Sound Vib.
,
502
, p.
116102
.
18.
Park
,
S.
,
Kim
,
M.
, and
Jeon
,
W.
,
2019
, “
Experimental Validation of Vibration Damping Using an Archimedean Spiral Acoustic Black Hole
,”
J. Sound Vib.
,
459
, p.
114838
.
19.
Bowyer
,
E. P.
, and
Krylov
,
V. V.
,
2014
, “
Damping of Flexural Vibrations in Turbofan Blades Using the Acoustic Black Hole Effect
,”
Appl. Acoust.
,
76
, pp.
359
365
.
20.
Ding
,
J.
,
Zhao
,
H.
,
Wang
,
J.
,
Sun
,
Y.
, and
Chen
,
Z.
,
2020
, “
Numerical and Experimental Investigation on the Shock Mitigation of Satellite-Rocket Separation
,”
Aerosp. Sci. Technol.
,
96
, p.
105538
.
21.
Bowyer
,
E. P.
,
Lister
,
J. M.
,
Krylov
,
V. V.
, and
O’Boy
,
D. J.
,
2012
, “
Experimental Study of Damping Flexural Vibrations in Tapered Turbofan Blades
,”
Acoustics 2012
,
Nantes, France
,
Apr. 23–27, 2012
, pp.
2201
2206
.
22.
Mi
,
Y.
,
Zhai
,
W.
,
Cheng
,
L.
,
Xi
,
C.
, and
Yu
,
X.
,
2021
, “
Wave Trapping by Acoustic Black Hole: Simultaneous Reduction of Sound Reflection and Transmission
,”
Appl. Phys. Lett.
,
118
(
11
), p.
114101
.
23.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.
24.
Hollkamp
,
J. J.
,
1994
, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Resonant Shunts
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
49
57
.
25.
Wu
,
S.
,
1996
, “
Piezoelectric Shunts With a Parallel R-L Circuit for Structural Damping and Vibration Control
,”
SPIE 2720, Smart Structures and Materials 1996: Passive Damping and Isolation
,
San Diego, CA
, Feb.
25–29, 1996
, pp.
259
269
.
26.
Wu
,
S.
,
1998
, “
Method for Multiple-Mode Shunt Damping of Structural Vibration Using a Single PZT Transducer
,”
SPIE 3327, Smart Structures and Materials 1998: Passive Damping and Isolation
,
San Diego, CA
, Mar.
1–5, 1998
, pp.
159
168
.
27.
Wu
,
S.
, and
Bicos
,
A. S.
,
1997
, “
Structural Vibration Damping Experiments Using Improved Piezoelectric Shunts
,”
SPIE 3045, Smart Structures and Materials 1997: Passive Damping and Isolation
,
San Diego, CA
,
Mar. 3–6
, pp.
40
50
.
28.
Zhao
,
L.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2014
, “
Broadband Energy Harvesting Using Acoustic Black Hole Structural Tailoring
,”
Smart Mater. Struct.
,
23
(
6
), p.
065021
.
29.
Zhao
,
L.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2015
, “
An Experimental Study of Vibration Based Energy Harvesting in Dynamically Tailored Structures With Embedded Acoustic Black Holes
,”
Smart Mater. Struct.
,
24
(
6
), p.
065039
.
30.
Zhao
,
L.
, and
Semperlotti
,
F.
,
2017
, “
Embedded Acoustic Black Holes for Semi-passive Broadband Vibration Attenuation in Thin-Walled Structures
,”
J. Sound Vib.
,
388
(
3
), pp.
42
52
.
31.
Deng
,
J.
,
Guasch
,
O.
,
Zheng
,
L.
,
Song
,
T.
, and
Cao
,
Y.
,
2021
, “
Semi-analytical Model of an Acoustic Black Hole Piezoelectric Bimorph Cantilever for Energy Harvesting
,”
J. Sound Vib.
,
494
, p.
115790
.
32.
Cheer
,
J.
,
Hook
,
K.
, and
Daley
,
S.
,
2021
, “
Active Feedforward Control of Flexural Waves in an Acoustic Black Hole Terminated Beam
,”
Smart Mater. Struct.
,
30
(
3
), p.
035003
.
33.
Ning
,
L.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2020
, “
Active Control of a Black Hole or Concentrator for Flexural Waves in an Elastic Metamaterial Plate
,”
Mech. Mater.
,
142
, p.
103300
.
34.
Zhao
,
L.
,
2016
, “
Passive Vibration Control Based on Embedded Acoustic Black Holes
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041002
.
35.
Beck
,
B. S.
, and
Cunefare
,
K. A.
,
2014
, “
Improved Negative Capacitance Shunt Damping With the Use of Acoustic Black Holes
,”
Active and Passive Smart Structures and Integrated Systems 2014, 9057
, p.
90571Z
.
36.
Wang
,
G.
,
Chen
,
S.
, and
Wen
,
J.
,
2011
, “
Low-Frequency Locally Resonant Band Gaps Induced by Arrays of Resonant Shunts With Antoniou’s Circuit: Experimental Investigation on Beams
,”
Smart Mater. Struct.
,
20
(
1
), p.
015026
.
37.
Zhang
,
H.
,
Wen
,
J.
,
Xiao
,
Y.
,
Wang
,
G.
, and
Wen
,
X.
,
2015
, “
Sound Transmission Loss of Metamaterial Thin Plates With Periodic Subwavelength Arrays of Shunted Piezoelectric Patches
,”
J. Sound Vib.
,
343
, pp.
104
120
.
38.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos
,”
New J. Phys.
,
13
(
11
), p.
113010
.
39.
Hou
,
T.
, and
Qin
,
H.
,
2012
, “
Continuous and Discrete Mexican Hat Wavelet Transforms on Manifolds
,”
Graph. Models
,
74
(
4
), pp.
221
232
.
40.
Au-Yang
,
M. K.
,
2011
, “
Fundamentals of Structural Dynamics
,”
Flow Induced Vibration of Power and Process Plant Components
.
You do not currently have access to this content.