Abstract

In the last years, the numerical and experimental research effort on joint nonlinearities and tribomechadynamics has increased. Thereby, local sticking and slipping effects as well as the influence of friction caused damping on the global dynamics are of interest. Conventional computational approaches like model order reduction techniques or the finite element method lead either to insufficient result quality or a high computational burden. For the efficient numerical consideration of jointed structures in combination with model order reduction, joint modes based on trial vector derivatives have been presented. These joint modes enable accurate computation of local nonlinear contact and friction forces together with efficient time integration even for high fidelity finite element models. This article describes the application of joint modes for efficient virtual tribomechadynamics. Therefore, a generic structure including a bolted joint is used. It is investigated if these joint modes reproduce local friction stress, and sticking/slipping areas comparable to the nonlinear finite element method within reasonable computational times. Moreover, global damping effects are studied at different preload levels and related to local sticking/slipping behavior. The numerical studies confirm that joint modes lead to accurate results with low computation effort and hence allow an efficient and detailed virtual investigation of complex joints. In addition, this publication shows that the consideration of tangential stiffness for the computation of joint modes remarkably increases the local result quality.

References

1.
Bograd
,
S.
,
Reuss
,
P.
,
Schmidt
,
A.
,
Gaul
,
L.
, and
Mayer
,
M.
,
2011
, “
Modeling the Dynamics of Mechanical Joints
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2801
2826
. 10.1016/j.ymssp.2011.01.010
2.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
. 10.1115/1.3097294
3.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1–4
), pp.
169
181
. 10.1007/BF01177306
4.
Schwingshackl
,
C. W.
,
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2012
, “
Measured and Estimated Friction Interface Parameters in a Nonlinear Dynamic Analysis
,”
Mech. Syst. Signal Process.
,
28
, pp.
574
584
. 10.1016/j.ymssp.2011.10.005
5.
Song
,
Y.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
,
Hartwigsen
,
C. J.
, and
Vakakis
,
A. F.
,
2003
, “
Modeling of the Dynamics of Jointed Beam Structures
,”
Proceeding of the 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Volume
5
, Vol. 5 B,
Chicago, IL
,
9/2/03–9/6/03
, pp.
1091
1100
.
6.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
Reduced-Order Modeling of Preloaded Bolted Structures in Multibody Systems by the Use of Trial Vector Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051032
. 10.1115/1.4036989
7.
Witteveen
,
W.
, and
Irschik
,
H.
,
2009
, “
Efficient Mode-Based Computational Approach for Jointed Structures: Joint Interface Modes
,”
AIAA J.
,
47
(
1
), pp.
252
263
. 10.2514/1.38436
8.
Géradin
,
M.
, and
Rixen
,
D. J.
,
2016
, “
A ‘nodeless’ Dual Superelement Formulation for Structural and Multibody Dynamics Application to Reduction of Contact Problems
,”
Int. J. Numer. Methods Eng.
,
106
(
10
), pp.
773
798
. 10.1002/nme.5136
9.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
A Complete Strategy for Efficient and Accurate Multibody Dynamics of Flexible Structures With Large Lap Joints Considering Contact and Friction
,”
Multibody Syst. Dyn.
,
40
(
4
), pp.
407
436
. 10.1007/s11044- 016-9555-2
10.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures With Trial Vector Derivatives
,”
Shock Vib.
,
2014
, p.
16
.
11.
Craig
,
R. R.
,
1985
, “
A Review of Time-Domain and Frequency-Domain Component Mode Synthesis Method
,”
Combined Experimental/Analytical Modeling of Dynamic Structural Systems; Proceedings of the Joint Mechanics Conference
,
Albuquerque, NM
,
June 24–26
, American Society of Mechanical Engineers, pp.
1
30
.
12.
Yuan
,
J.
,
El-Haddad
,
F.
,
Salles
,
L.
, and
Wong
,
C.
,
2019
, “
Numerical Assessment of Reduced Order Modeling Techniques for Dynamic Analysis of Jointed Structures With Contact Nonlinearities
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031027
. 10.1115/1.4041147
13.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
. 10.1023/A:1009773505418
14.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
15.
Qu
,
Z.-Q.
,
2004
,
Model Order Reduction Techniques With Applications in Finite Element Analysis
,
Springer
,
London, UK
.
16.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
, 2 ed.,
John Wiley & Sons, Inc.
,
Hoboken, New Jersey
.
17.
Witteveen
,
W.
, and
Pichler
,
F.
,
2019
, “
On the Relevance of Inertia Related Terms in the Equations of Motion of a Flexible Body in the Floating Frame of Reference Formulation
,”
Multibody Syst. Dyn.
,
46
(
1
), pp.
77
105
. 10.1007/s11044- 018-09662-0
18.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
, 2nd ed.,
Springer-Verlag
,
Berlin/Heidelberg
.
19.
Hughes
,
P. J.
,
Scott
,
W.
,
Wu
,
W.
,
Kuether
,
R. J.
,
Allen
,
M. S.
, and
Tiso
,
P.
,
2019
, “Interface Reduction on Hurty/Craig-Bampton Substructures with Frictionless Contact,”
Nonlinear Dynamics
,
Kerschen
,
G.
, ed.,
Vol. 1 of Conference Proceedings of the Society for Experimental Mechanics Series
,
Springer International Publishing
,
Cham
, pp.
1
16
.
20.
Wall
,
M.
,
Allen
,
M.
, and
Zare
,
I.
,
2019
, “
Predicting S4 Beam Joint Nonlinearity Using Quasi-Static Modal Analysis
,”
Nonlinear Structures and Systems, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series; IMAC-XXXVII
,
Orlando, FL
,
Jan. 28–31
,
Springer
,
Cham
, pp.
39
51
.
21.
MSC Software Corporation
,
2013
.
MSC Nastran 2013 Quick Reference Guide
.
22.
Dassault Systemes
. abaqus
2018
.
23.
MSC Software Corporation
.
MSC.ADAMS V2015
.
24.
Pichler
,
F.
, and
Witteveen
,
W.
,
2020
, “
Convergence Study on the C-beam Using Joint Modes Based on Trial Vector Derivatives: (accepted for Publication)
,”
Proceedings of the IMAC XXXVIII - 2020
,
Houston, TX
,
Feb. 10–13
.
25.
Garino
,
C. G.
, and
Ponthot
,
J. -P.
,
2008
, “
A Quasi-Coulomb Model for Frictional Contact Interfaces: Application to Metal Forming Simulations
,”
Latin Am. Appl. Res.
,
38
(
2
), pp.
95
104
.
26.
Schwingshackl
,
C. W.
, and
Nowell
,
D.
,
2020
,
The Measurement of Tangential Contact Stiffness for Nonlinear Dynamic Analysis
, Vol.
1
,
G.
Kerschen
,
M. R. W.
Brake
, and
L.
Renson
, eds.,
Springer International Publishing
,
Cham
, pp.
165
167
.
27.
Becker
,
J.
, and
Gaul
,
L.
,
2008
, “
CMS Methods for Efficient Damping Prediction for Structures with Friction
,”
Proceedings of the IMAC - XXVI
,
Orlando, IL
,
Feb. 4–7
, Society for Experimental Mechanics.
28.
Yuan
,
J.
,
Salles
,
L.
,
Haddad
,
F. E.
, and
Wong
,
C.
,
2020
, “
An Adaptive Component Mode Synthesis Method for Dynamic Analysis of Jointed Structure With Contact Friction Interfaces
,”
Special Issue Struct. Dyn.
,
229
, p.
106177
.
29.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2006
, “
On An Implementation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics (DETC2005-85096)
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
. 10.1115/1.2389231
30.
Bournine
,
H.
,
Wagg
,
D. J.
, and
Neild
,
S. A.
,
2011
, “
Vibration Damping in Bolted Friction Beam-columns
,”
J. Sound Vib.
,
330
(
8
), pp.
1665
1679
. 10.1016/j.jsv.2010.10.022
You do not currently have access to this content.