Abstract

This paper presents a new design of a high-static-low-dynamic stiffness (HSLDS) isolator with an adjustable cam profile. The interaction force between the cam and roller provides the negative stiffness force and the linear spring provides the positive stiffness force in the HSLDS isolator. Unlike previous studies, the cam profile in this paper can be individually designed to meet different working conditions. Firstly, the harmonic balance method is used to acquire the dynamic response of the HSLDS isolator. Then, the effects of the damping ratio, stiffness ratio, and external force amplitude on the frequency response amplitude and force transmissibility are discussed. Finally, the frequency responses of four designed nonlinear HSLDS isolators and a linear isolator are acquired by the numerical method. The results show that the nonlinear isolator begins to achieve vibration isolation at 0.11 Hz and the linear one is 8.9 Hz. The proposed HSLDS isolator realizes lower vibration isolation frequency than the linear isolator.

References

1.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Shock and Vibration Handbook
, Vol.
5
,
McGraw-Hill
,
New York
.
2.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
. 10.1016/j.jsv.2008.01.014
3.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
V.
, Jr.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator with High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
. 10.1016/j.ijmecsci.2011.11.012
4.
Niu
,
F.
,
Meng
,
L. S.
,
Wu
,
W. J.
,
Sun
,
J. G.
,
Su
,
W. H.
,
Meng
,
G.
, and
Rao
,
Z. S.
,
2013
, “
Recent Advances in Quasi-Zero-Stiffness Vibration Isolation Systems
,”
Appl. Mech. Mater.
,
397–400
, pp.
295
303
. 10.4028/www.scientific.net/AMM.397-400.295
5.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
. 10.1016/j.jsv.2011.07.039
6.
Lee
,
C. M.
, and
Goverdovskiy
,
V. N.
,
2012
, “
A Multi-Stage High-Speed Railroad Vibration Isolation System with “Negative” Stiffness
,”
J. Sound Vib.
,
331
(
4
), pp.
914
921
. 10.1016/j.jsv.2011.09.014
7.
Liu
,
C.
,
Jing
,
X.
,
Daley
,
S.
, and
Li
,
F.
,
2015
, “
Recent Advances in Micro-Vibration Isolation
,”
Mech. Syst. Sig. Process.
,
56–57
, pp.
55
80
. 10.1016/j.ymssp.2014.10.007
8.
Okwudire
,
C. E.
, and
Lee
,
J.
,
2013
, “
Minimization of the Residual Vibrations of Ultra-Precision Manufacturing Machines via Optimal Placement of Vibration Isolators
,”
Precis. Eng.
,
37
(
2
), pp.
425
432
. 10.1016/j.precisioneng.2012.11.005
9.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator with Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
. 10.1016/j.jsv.2006.10.011
10.
Hao
,
Z.
, and
Cao
,
Q.
,
2015
, “
The Isolation Characteristics of an Archetypal Dynamical Model with Stable-Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
340
, pp.
61
79
. 10.1016/j.jsv.2014.11.038
11.
Xu
,
D.
,
Zhang
,
Y.
,
Zhou
,
J.
, and
Lou
,
J.
,
2014
, “
On the Analytical and Experimental Assessment of the Performance of a Quasi-Zero-Stiffness Isolator
,”
J. Vib. Control
,
20
(
15
), pp.
2314
2325
. 10.1177/1077546313484049
12.
Lan
,
C. C.
,
Yang
,
S. A.
, and
Wu
,
Y. S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
. 10.1016/j.jsv.2014.05.009
13.
Hu
,
Z.
,
Wang
,
X.
,
Yao
,
H.
,
Wang
,
G.
, and
Zheng
,
G.
,
2018
, “
Theoretical Analysis and Experimental Identification of a Vibration Isolator with Widely-Variable Stiffness
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051014
. 10.1115/1.4039537
14.
Winterflood
,
J.
,
Barber
,
T.
, and
Blair
,
D. G.
,
2002
, “
Using Euler Buckling Springs for Vibration Isolation
,”
Classical Quantum Gravity
,
19
(
7
), pp.
1639
1645
. 10.1088/0264-9381/19/7/355
15.
Winterflood
,
J.
,
Blair
,
D.
, and
Slagmolen
,
B.
,
2002
, “
High Performance Vibration Isolation Using Springs in Euler Column Buckling Mode
,”
Phys. Lett. A
,
300
(
2–3
), pp.
122
130
. 10.1016/S0375-9601(02)00258-X
16.
Ding
,
H.
,
Lu
,
Z. Q.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Isolation of Transverse Vibration of Pre-Pressure Beams
,”
J. Sound Vib.
,
442
, pp.
738
751
. 10.1016/j.jsv.2018.11.028
17.
Sun
,
X.
,
Jing
,
X.
,
Xu
,
J.
, and
Cheng
,
L.
,
2014
, “
Vibration Isolation via a Scissor-Like Structured Platform
,”
J. Sound Vib.
,
333
(
9
), pp.
2404
2420
. 10.1016/j.jsv.2013.12.025
18.
Sun
,
X.
, and
Jing
,
X.
,
2016
, “
A Nonlinear Vibration Isolator Achieving High-Static-Low-Dynamic Stiffness and Tunable Anti-Resonance Frequency Band
,”
Mech. Syst. Sig. Process.
,
80
, pp.
166
188
. 10.1016/j.ymssp.2016.04.011
19.
Sun
,
M.
,
Song
,
G.
,
Li
,
Y.
, and
Huang
,
Z.
,
2019
, “
Effect of Negative Stiffness Mechanism in a Vibration Isolator with Asymmetric and High-Static-Low-Dynamic Stiffness
,”
Mech. Syst. Sig. Process.
,
124
, pp.
388
407
. 10.1016/j.ymssp.2019.01.042
20.
Xu
,
D.
,
Yu
,
Q.
,
Zhou
,
J.
, and
Bishop
,
S. R.
,
2013
, “
Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator with Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
332
(
14
), pp.
3377
3389
. 10.1016/j.jsv.2013.01.034
21.
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Six Degrees-of-Freedom Vibration Isolation Platform Supported by a Hexapod of Quasi-Zero-Stiffness Struts
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
034502
. 10.1115/1.4035715
22.
Dong
,
G.
,
Zhang
,
X.
,
Xie
,
S.
,
Yan
,
B.
, and
Luo
,
Y.
,
2017
, “
Simulated and Experimental Studies on a High-Static-Low-Dynamic Stiffness Isolator Using Magnetic Negative Stiffness Spring
,”
Mech. Syst. Sig. Process.
,
86
, pp.
188
203
. 10.1016/j.ymssp.2016.09.040
23.
Zhang
,
F.
,
Shao
,
S.
,
Tian
,
Z.
,
Xu
,
M.
, and
Xie
,
S.
,
2019
, “
Active-Passive Hybrid Vibration Isolation with Magnetic Negative Stiffness Isolator Based on Maxwell Normal Stress
,”
Mech. Syst. Sig. Process.
,
123
, pp.
244
263
. 10.1016/j.ymssp.2019.01.022
24.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator with Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051004
. 10.1115/1.4036465
25.
Inamoto
,
K.
, and
Ishida
,
S.
,
2019
, “
Improved Feasible Load Range and its Effect on the Frequency Response of Origami-Inspired Vibration Isolators with Quasi-Zero-Stiffness Characteristics
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021004
. 10.1115/1.4041368
26.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator with Cam-Roller-Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
. 10.1016/j.jsv.2015.02.005
27.
Cheng
,
C.
,
Li
,
S.
,
Wang
,
Y.
, and
Jiang
,
X.
,
2015
, “
On the Analysis of a Piecewise Nonlinear-Linear Vibration Isolator with High-Static-Low-Dynamic-Stiffness Under Base Excitation
,”
J. Vibroeng.
,
17
(
7
), pp.
3453
3470
.
28.
Liu
,
Y.
,
Yu
,
D. P.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable Cam Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
. 10.1016/j.mechmachtheory.2016.04.014
29.
Liu
,
Y.
,
Li
,
D. J.
,
Yu
,
D. P.
,
Miao
,
J. G.
, and
Yao
,
J.
,
2017
, “
Design of a Curved Surface Constant Force Mechanism
,”
Mech. Based Des. Struct. Mach.
,
45
(
2
), pp.
160
172
. 10.1080/15397734.2016.1157692
30.
Li
,
M.
, and
Cheng
,
W.
,
2018
, “
Design and Experimental Validation of a Large-Displacement Constant-Force Mechanism
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051007
.10.1115/1.4040437
You do not currently have access to this content.