A new guided wave imaging application for fast, low-cost ultrasound-based cargo scanning system is proposed. The ultimate goal is the detection of high-atomic-number, shielding containers used to diminish the radiological signature of nuclear threats. This ultrasonic technology has the potential to complement currently deployed X-ray-based radiographic systems, thus enhancing the probability of detecting nuclear threats. An array of ultrasonic transceivers can be attached to the metallic structure of the cargo to create a guided Lamb wave. Guided medium thickness and composition variation creates reflections whose placement can be revealed by means of an imaging algorithm. The knowledge of the reflection position provides information about the shielding metallic container location inside the cargo. Moreover, due to the low coupling between metallic and nonmetallic surfaces, only the footprint of metallic containers shows up in the imaging results, thus avoiding false positives from plastic or wooden assets. As imaging capabilities are degraded if working with dispersive Lamb wave modes, the operating frequency is tuned to provide a tradeoff between low dispersion and real-time image resolution. Reflected waves in the guided domain bounds may limit the performance of imaging methods for guided media. This contribution proposes a solution based on real-time Fourier domain analysis, where plane wave components can be filtered out, thus removing nondesired contributions from bounds. Several realistic examples, scaled due to limited calculation capabilities of the available computational resources, are presented in this work, showing the feasibility of the proposed method.

References

1.
Medalia
,
J.
,
2010
,
Detection of Nuclear Weapons and Materials: Science, Technologies, Observations
,
DIANE Publishing
, Collingdale, PA.
2.
Chang
,
C. L.
,
He
,
M.
, and
Nguyen
,
M. H.
,
2010
, “
Computational Model for Automatic Cargo Container Inspection Systems
,”
IEEE International Conference on Technologies for Homeland Security
(
HST
), Waltham, MA, Nov. 8–10, pp.
556
561
.
3.
European Commission—Customs
2002, “
Chapter 3—Container Specifications
,”
Good Practice Guide
.
4.
Rock-It Cargo, 2009, “Air Container Specifications,” Rock-It Cargo, London, accessed Nov. 25, 2015, http://www.rockitcargo.com/uploads/AirContainerSpecs.pdf
5.
Avramides
,
A.
, and
Henstock
,
P.
,
1995
, “
Air Cargo Containers
,”
U.S. Patent No. 5,398,831
.
6.
Hall
,
J. S.
,
Fromme
,
P.
, and
Michaels
,
J. E.
,
2011
, “
Ultrasonic Guided Wave Imaging for Damage Characterization
,”
2011 Aircraft Airworthiness and Sustainment Conference
(
AA&S
), San Diego, CA, Apr. 17–21.
7.
Michaels
,
J. E.
,
2008
, “
Detection, Localization and Characterization of Damage in Plates With an In Situ Array of Spatially Distributed Ultrasonic Sensors
,”
Smart Mater. Struct.
,
17
(
3
), p.
035035
.
8.
Ros
,
K.
, and
Fink
,
M.
,
2001
, “
Ultrasonic Imaging Using Spatio-Temporal Matched Field (STMF) Processing—Applications to Liquid and Solid Waveguides
,”
IEEE Trans. Ultrasonics, Ferroelectrics, Freq. Control
,
48
(
2
), pp.
374
386
.
9.
Martinez-Lorenzo
,
J. A.
, and
Alvarez-Lopez
,
Y.
,
2014
, “
An Ultrasonic Approach for Sensing and Imaging Shielding Containers of Nuclear Threats
,”
ASME
Paper No. DSCC2014-6183.
10.
Knab
,
L. J.
,
Blessing
,
G. V.
, and
Clifton
,
J. R.
,
1983
, “
Laboratory Evaluation of Ultrasonics for Crack Detection in Concrete
,”
Am. Concr. Inst. J. Proc.
,
80
(
1
), pp.
17
23
.
11.
Cawley
,
P.
,
2003
, “
Practical Long Range Guided Wave Inspection—Applications to Pipes and Rail
,”
Second Middle East Nondestructive Testing Conference and Exhibition
, Jubai Industrial City, Saudi Arabia, Dec. 8–10.
12.
Mohr
,
W.
, and
Holler
,
P.
,
1976
, “
On Inspection of Thin-Walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves
,”
IEEE Trans. Sonics Ultrasonics
,
23
(
5
), pp.
369
373
.
13.
Salzburger
,
H. J.
,
Dobmann
,
G.
, and
Mohrbacher
,
H.
,
2001
, “
Quality Control of Laser Welds of Tailored Blanks Using Guided Waves and EMATs
,”
IEEE Proc. Sci. Meas. Technol.
,
148
(
4
), pp.
143
148
.
14.
Rose
,
J. L.
, and
Soley
,
L.
,
2000
, “
Ultrasonic Guided Waves for Anomaly Detection in Aircraft Components
,”
Mater. Eval.
,
58
(
9
), pp.
1080
1086
.
15.
Chang
,
F. H.
,
Drake
,
T. E.
,
Osterkamp
,
M. A.
,
Prowant
,
R. S.
,
Monchalin
,
J. P.
,
Heon
,
R.
,
Bouchard
,
P.
,
Padioleau
,
C.
,
Froom
,
D. A.
,
Frazier
,
W.
, and
Barton
,
J.
,
1993
, “
Laser Ultrasonic Inspection of Honeycomb Aircraft Structures
,”
Review of Progress in Quantitative Nondestructive Evaluation
, pp.
611
616
.
16.
Ahuja
,
A. T.
,
Griffith
,
J. F.
,
Wong
,
K. T.
,
Antonio
,
G. E.
,
Chu
,
W. C.
, and
Ho
,
S. S.
,
2007
,
Diagnostic Imaging: Ultrasound
, 1st ed., AMIRSYS Publishing, Inc., Salt Lake City, UT.
17.
Rose
,
J. L.
,
1999
,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
,
New York
.
18.
Fromme
,
P.
, and
Sayir
,
M. B.
,
2002
, “
Detection of Cracks at Rivet Holes Using Guided Waves
,”
Ultrasonics
,
40
(
1
), pp.
199
203
.
19.
Guo
,
N.
, and
Cawley
,
P.
,
1993
, “
The Interaction of Lamb Waves With Delaminations in Composite Laminates
,”
J. Acoust. Soc. Am.
,
94
(
4
), pp.
2240
2246
.
20.
Harley
,
J. B.
, and
Moura
,
J. M. F.
,
2013
, “
Sparse Recovery of the Multimodal and Dispersive Characteristics of Lamb Waves
,”
J. Acoust. Soc. Am.
,
133
(
5
), pp.
2732
2745
.
21.
Harley
,
J. B.
, and
Moura
,
J. M. F.
,
2014
, “
Data-Driven Matched Field Processing for Lamb Wave Structural Health Monitoring
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1231
1244
.
22.
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1992
, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrasonics, Ferroelectrics, Freq. Control
,
39
(
3
), pp.
381
397
.
23.
Eisenhardt
,
C.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
1999
, “
Application of Laser Ultrasonics to Develop Dispersion Curves for Elastic Plates
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
1043
1045
.
24.
Rogge
,
M. D.
, and
Leckey
,
C. A.
,
2013
, “
Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis
,”
Ultrasonics
,
53
(
7
), pp.
1217
1226
.
25.
Yu
,
L.
,
Tian
,
Z.
, and
Leckey
,
C. A.
,
2015
, “
Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods
,”
Ultrasonics
,
62
, pp.
203
212
.
26.
Norton
,
S. J.
, and
Linzer
,
M.
,
1981
, “
Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures
,”
IEEE Trans. Biomed. Eng.
,
28
(
2
), pp.
201
220
.
27.
Mayer
,
K.
,
Marklein
,
R.
,
Langenberg
,
K. J.
, and
Kreutter
,
T.
,
1990
, “
Three-Dimensional Imaging System Based on Fourier Transform Synthetic Aperture Focusing Technique
,”
Ultrasonics
,
28
(
4
), pp.
241
255
.
28.
Ditri
,
J. J.
, and
Rajana
,
K. M.
,
1995
, “
Analysis of the Wedge Method of Generating Guided Waves
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
, New York, pp.
163
170
.
29.
Luo
,
W.
, and
Rose
,
J. L.
,
2004
, “
Lamb Wave Thickness Measurement Potential With Angle Beam and Normal Beam Excitation
,”
Mater. Eval.
,
62
(
8
), pp.
860
866
.
30.
Castaings
,
M.
, and
Cawley
,
P.
,
1996
, “
The Generation, Propagation, and Detection of Lamb Waves in Plates Using Air-Coupled Ultrasonic Transducers
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3070
3077
.
31.
Guo
,
Z.
,
Achenbach
,
J. D.
, and
Krishnaswamy
,
S.
,
1997
, “
EMAT Generation and Laser Detection of Single Lamb Wave Modes
,”
Ultrasonics
,
35
(
6
), pp.
423
429
.
32.
Dixon
,
S.
,
Edwards
,
C.
, and
Palmer
,
S. B.
,
2003
, “
The Optimization of Lamb and Rayleigh Wave Generation Using Wideband-Low-Frequency EMATs
,”
Rev. Prog. Quant. Nondestructive Eval.
,
20
(
A&B
), pp.
297
304
.
33.
COMSOL, 2016, “Comsol Multiphysics,” Comsol Inc., Burlington, MA, accessed Sept. 5, 2015, www.comsol.com
34.
Hora
,
P.
, and
Červená
,
O.
,
2012
, “
Determination of Lamb Wave Dispersion Curves by Means of Fourier Transform
,”
Appl. Comput. Mech.
,
6
(
1
), pp.
5
16
.
35.
Johnson
,
J. A.
,
Karaman
,
M.
, and
Khuri-Yakub
,
B. T.
,
2005
, “
Coherent-Array Imaging Using Phased Subarrays. Part I: Basic Principles
,”
IEEE Trans. Ultrasonics, Ferroelectrics, Freq. Control
,
52
(
1
), pp.
37
50
.
You do not currently have access to this content.