Nonlinear and nonplanar lateral vibration of a self-excited vertical cantilevered pipe conveying fluid is studied for the case that the upper end of the pipe is periodically excited in the horizontal direction. The modulation equations, which are coupled with nonlinear terms and govern the amplitudes and phases of nonplanar vibration, are analytically derived. When the excitation frequency is near the nonplanar limit cycle frequency, the nonplanar self-excited vibration is quenched to the excitation, and the amplitude of lateral vibration in the direction perpendicular to the horizontal excitation is decreased. Experiments were conducted and spatial pipe behaviors were observed using two CCD cameras. The theoretically predicted effects of horizontal excitation were confirmed qualitatively.

References

1.
Païdoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
,
Academic Press
,
London
.
2.
Sugiyama
,
Y.
,
Tanaka
,
Y.
,
Kishi
,
T.
, and
Kawagoe
,
H.
,
1985
, “
Effect of a Spring Support on the Stability of Pipes Conveying Fluid
,”
J. Sound Vib.
,
100
(
2
), pp.
257
270
.10.1016/0022-460X(85)90419-5
3.
Bishop
,
R. E. D.
, and
Fawzy
,
I.
,
1976
, “
Free and Forced Oscillation of a Vertical Tube Containing a Flowing Fluid
,”
Philos. Trans. R. Soc. London, Ser. A
,
284
(
1316
), pp.
1
47
.10.1098/rsta.1976.0098
4.
Rousselet
,
J.
, and
Herrmann
,
G.
,
1981
, “
Dynamic Behavior of Continuous Cantilevered Pipes Conveying Fluid Near Critical Velocities
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
943
947
.10.1115/1.3157760
5.
Bajaj
,
A. K.
,
Sethna
,
P. R.
, and
Lundgren
,
T. S.
,
1980
, “
Hopf Bifurcation Phenomena in Tubes Carrying a Fluid
,”
SIAM J. Appl. Math.
,
39
(
2
), pp.
213
230
.10.1137/0139019
6.
Païdoussis
,
M. P.
, and
Semler
,
C.
,
1998
, “
Non-Linear Dynamics of a Fluid-Conveying Cantilevered Pipe With a Small Mass Attached at the Free End
,”
Int. J. Non-Linear Mech.
,
33
(
1
), pp.
15
32
.10.1016/S0020-7462(97)00002-4
7.
Miles
,
J.
,
1984
, “
Resonant Motion of a Spherical Pendulum
,”
Physica D
,
11
(
3
), pp.
309
323
.10.1016/0167-2789(84)90013-7
8.
Ibrahim
,
R. A.
,
2010
, “
Overview of Mechanics of Pipes Conveying Fluids. Part I: Fundamental Studies
,”
ASME J. Pressure Vessel
,
132
(
3
), p.
034001
.10.1115/1.4001271
9.
Bajaj
,
A. K.
, and
Sethna
,
P. R.
,
1984
, “
Flow Induced Bifurcations to Three-Dimensional Oscillatory Motions in Continuous Tubes
,”
SIAM J. Appl. Math.
,
44
(
2
), pp.
270
286
.10.1137/0144020
10.
Steindl
,
A.
, and
Troger
,
H.
,
1995
, “
Nonlinear Three-Dimensional Oscillations of Elastically Constrained Fluid Conveying Viscoelastic Tubes With Perfect and Broken O(2)-Symmetry
,”
Nonlinear Dyn.
,
7
(
2
), pp.
165
193
.10.1007/BF00053707
11.
Païdoussis
,
M. P.
, and
Li
,
G. X.
,
1993
, “
Pipes Conveying Fluid: A Model Dynamical Problem
,”
J. Fluids Struct.
,
7
(
2
), pp.
137
204
.10.1006/jfls.1993.1011
12.
Bajaj
,
A. K.
, and
Sethna
,
P. R.
,
1991
, “
Effect of Symmetry-Breaking Perturbations on Flow-Induced Oscillations in Tubes
,”
J. Fluids Struct.
,
5
(
6
), pp.
651
679
.10.1016/0889-9746(91)90344-O
13.
Copeland
,
G. S.
, and
Moon
,
F. C.
,
1992
, “
Chaotic Flow-Induced Vibration of a Flexible Tube With End Mass
,”
J. Fluids Struct.
,
6
(
6
), pp.
705
718
.10.1016/0889-9746(92)90004-M
14.
Modarres-Sadeghi
,
Y.
,
Semler
,
C.
,
Wadham-Gagnon
,
M.
, and
Païdoussis
,
M. P.
,
2007
, “
Dynamics of Cantilevered Pipes Conveying Fluid. Part 3: Three-Dimensional Dynamics in the Presence of an End-Mass
,”
J. Fluids Struct.
,
23
(
4
), pp.
589
603
.10.1016/j.jfluidstructs.2006.10.007
15.
Yoshizawa
,
M.
,
Suzuki
,
T.
, and
Hashimoto
,
K.
,
1998
, “
Nonlinear Lateral Vibration of a Vertical Fluid-Conveying Pipe With End Mass
,”
JSME Int. J. Ser. C
,
41
(
3
), pp.
652
661
.10.1299/jsmec.41.652
16.
Yamashita
,
K.
,
Yoshizawa
,
M.
,
Hirose
,
Y.
, and
Taniguchi
,
A.
,
2008
, “
Non-Planar Vibrations of a Pipe Conveying Fluid With a Spring-Supported End
,”
J. Syst. Des. Dyn.
,
2
(
3
), pp.
837
848
.10.1299/jsdd.2.837
17.
Folley
,
C. N.
, and
Bajaj
,
A. K.
,
2005
, “
Spatial Nonlinear Dynamics Near Principal Parametric Resonance for a Fluid-Conveying Cantilever Pipe
,”
J. Fluids Struct.
,
21
(
5–7
), pp.
459
484
.10.1016/j.jfluidstructs.2005.08.014
18.
Païdoussis
,
M. P.
,
Semler
,
C.
,
Wadham-Gagnon
,
M.
, and
Saaid
,
S.
,
2007
, “
Dynamics of Cantilevered Pipes Conveying Fluid. Part 2: Dynamics of the System With Intermediate Spring Support
,”
J. Fluids Struct.
,
23
(
4
), pp.
569
587
.10.1016/j.jfluidstructs.2006.10.009
19.
Ghayesh
,
M. H.
, and
Païdoussis
,
M. P.
,
2010
, “
Three-Dimensional Dynamics of a Cantilevered Pipe Conveying Fluid, Additionally Supported by an Intermediate Spring Array
,”
Int. J. Non-Linear Mech.
,
45
(
5
), pp.
507
524
.10.1016/j.ijnonlinmec.2010.02.001
20.
Ghayesh
,
M. H.
,
Païdoussis
,
M. P.
, and
Modarres-Sadeghi
,
Y.
,
2011
, “
Three-Dimensional Dynamics of a Fluid-Conveying Cantilevered Pipe Fitted With an Additional Spring-Support and an End-Mass
,”
J. Sound Vib.
,
330
(
12
), pp.
2869
2899
.10.1016/j.jsv.2010.12.023
21.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
22.
Edelstein
,
W. S.
,
Chen
,
S. S.
, and
Jendrzejczyk
,
J. A.
,
1986
, “
A Finite Element Computation of the Flow-Induced Oscillations in a Cantilevered Tube
,”
J. Sound Vib.
,
107
(
1
), pp.
121
129
.10.1016/0022-460X(86)90287-7
23.
Carr
,
J.
,
1981
,
Applications of Centre Manifold Theory
,
Springer-Verlag
,
New York
.
24.
Schmidt
,
G.
, and
Tondl
,
A.
,
1986
,
Non-Linear Vibrations
,
Cambridge University Press
,
Cambridge
, UK.
You do not currently have access to this content.