A new reduced-order design synthesis technology has been developed for vibration response and flutter control of cold-stream, high-bypass ratio, shroudless, aeroengine fans. To simplify the design synthesis (optimization) of the fan, a significant order reduction of the mechanical response and stiffness-shape design synthesis has been achieved. The assumed cyclic symmetric baseline fan is modeled as a cascade of tuned, shroudless, arbitrarily shaped, wide-chord laminated composite blades, each with a reduced order of degrees of freedom using a three-dimensional (3D) elasticity spectral-based energy model (McGee et al., 2013, “A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part I: Theoretical Basis, ASME J. Turbomach., in press; Fang et al., 2013, “A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part II: Finite Element Benchmark Comparisons, ASME J. Turbomach., in press). The uniqueness of the mechanical analysis is that the composite fan was modeled as a “meshless” continuum, consisting of nodal point data to describe the arbitrary volume. A stationary value of energy within the arbitrarily shaped composite fan annulus was achieved using an extended spectral-based Ritz procedure to obtain the dynamical equations of motion for 3D free vibration response of a rotating composite high-bypass fan. No additional kinematical constraints (as in beam, plate, or shell theories) were utilized in the 3D elasticity-based energy formulation. The convergence accuracy of the spectral-based 3D free vibration response predictions was nearly one percent upper-bounds on the exact mechanical response of the baseline composite fan, particularly in the lowest five modes studied closely in this work, as typically seen with spectral-based Ritz procedures employed in the analysis. The spectral-based 3D predictions was validated against those predicted using a general purpose finite element technology widely used by industry. In off-design operation, the frequency margins of the lower flex-torsion modes of a fan may be dangerously close to integral-order resonant and empirical stall flutter boundaries. For a given baseline composite fan, it is proposed that to reduce the likelihood of resonant response and flutter on a Campbell diagram, design analysts can efficiently unite the newly developed reduced-order 3D spectral-based energy reanalysis within a novel reduced-order spectral-based Kuhn–Tucker optimality design synthesis procedure to fairly accurately restructure the Campbell diagram of a composite high-bypass ratio fan using stiffness optimization (by means of proper choices of angle-ply orientations of the blade laminates) and mass-balancing (shape) optimization (by way of blade thickness variation tuning of the lower aerodynamic loading portion of the blades between the dovetail root section and the midradial height section of the composite fan annulus). Fan design optima is summarized that (1) achieves multiple frequency margins and satisfies multiple empirical stall flutter constraints, (2) controls the twist-flex vibratory response in the lowest (fundamental) mode, and (3) ensures the mechanical strength integrity of the optimized angle-ply lay-up under steady centrifugal tension and gas bending stresses. Baseline and optimally restructured Campbell diagrams and design sensitivity calculations are presented, comparing optimum solution accuracy and validity of the proposed reduced-order spectral-based design synthesis technology against optimum solutions generated from open-source nonlinear mathematical programming software (i.e., NASA’s general-purpose sequential unconstrained minimization technique, Newsumt-A) (Miura and Schmit, Jr., 1979, ”NEWSUMT–A, Fortran Program for Inequality Constrained Function Minimization—Users Guide,“ NASA CR-159070). Design histories of fan stiffness and mass balancing (or shape) along with nondimensional constraints (i.e., frequency margins, reduced frequencies, twist-flex vibratory response, first-ply failure principal stress limits, and dovetail-to-midblade height thickness distribution) show that a proper implementation of fan stiffness tailoring (via symmetric angle-ply orientations) and mass-balancing (thickness) optimization of the fan assembly produces a feasible Campbell diagram that satisfies all design goals. An off-design analysis of the optimized fan shows little sensitivity to twist-flex coupling response and flutter with respect to small variability or errors in optimum design construction. Industry manufacturing processes may introduce these small errors known as angle-ply laminate construction misalignments (Graham and Guentert, 1965, “Compressor Stall and Blade Vibration,” Aerodynamic Design of Axial-Flow Compressors, Chap. XI, NASA SP-36; Meher-Hornji, 1995, “Blading Vibration and Failures in Gas Turbines, Part A: Blading Dynamics and the Operating Environment,” ASME Paper 95-GT-418; Petrov et al., 2002, “A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems,” ASME J. Eng. Gas Turbines Power, 124(3), pp. 586–597; Wei and Pierre, 1990, “Statistical Analysis of the Forced Response of Mistuned Cyclic Assemblies,” ASME J. Eng. Gas Turbines Power, 28(5), pp. 861–868; Wisler, 1988, “Advanced Compressor and Fan Systems,” GE Aircraft Engines, Cincinnati, Ohio (also 1986 Lecture to ASME Turbomachinery Institute, Ames Iowa)).

References

1.
McGee
,
O. G.
,
Fang
,
C.
, and
El-Aini
,
Y.
,
2013
, “
A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part I: Theoretical Basis
,”
ASME J. Turbomach.
(in press).10.1115/1.4004445
2.
Fang
,
C.
,
McGee
,
O. G.
, and El-
Aini
,
Y.
,
2013
, “
A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part II: Finite Element Benchmark Comparisons
,”
J. Turbomach.
(in press).10.1115/1.4007256
3.
Miura
,
H.
, and
Schmit
, Jr.,
L. A.
,
1979
, “
NEWSUMT–A, Fortran Program For Inequality Constrained Function Minimization—Users Guide
,” NASA CR-159070.
4.
Campbell
,
W.
,
1924
, “
Protection of Steam Turbine Disk Wheels From Axial Vibration
,”
ASME Spring Meeting
,
Cleveland, OH
, Paper 1920.
5.
Fleeter
,
S.
, and
Hoyniak
,
D.
,
1987
, “
Chordwise Spacing Aerodynamic Detuning for Unstalled Supersonic Flutter Stability Enhancement
,”
J. Sound Vib.
,
115
(
3
), pp.
483
497
.10.1016/0022-460X(87)90292-6
6.
Sladojević
,
I.
,
Sayma
,
A. I.
, and
Imregun
,
M.
,
2007
, “
Influence of Stagger Angle Variation on Aerodynamic Damping and Frequency Shifts
,”
ASME TURBO EXPO’07
,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-28166.10.1115/GT2007-28166
7.
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Miyakozawa
,
T.
,
2007
, “
The Effects of Unsteady Aerodynamic Asymmetric Perturbations on Flutter
,”
ASME TURBO EXPO’07
,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-27503.10.1115/GT2007-27503
8.
Miyakozawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K.C.
,
2008
, “
The Effects of Aerodynamic Perturbations on Forced Response of Bladed Disks
,”
ASME TURBO EXPO’08
,
Berlin, June 9–13
,
ASME
Paper No. GT2008-50719.10.1115/GT2008-50719
9.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K.C.
,
2008
, “
Aerodynamic Asymmetry Analysis of Unsteady Flows in Turbomachinery
,”
ASME TURBO EXPO’08
,
Berlin, June 9–13
,
ASME
Paper No. GT2008-51176.10.1115/GT2008-51176
10.
Sanders
,
A.
,
2005
, “
Nonsynchronous Vibration Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,”
ASME J. Turbomach.
,
127
, pp.
412
421
.10.1115/1.1811091
11.
Spiker
,
M. A.
,
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Thomas
,
J.P.
,
2008
, “
Efficient Design Method for Non-Synchronous Vibrations Using Enforced Motion
,”
ASME TURBO EXPO’08
,
Berlin, June 9–13
,
ASME
Paper No. GT2008-50599.10.1115/GT2008-50599
12.
Vo
,
H. D.
,
2010
, “
Role of Tip Clearance Flow in Rotating Instabilities and Nonsynchronous Vibrations
,”
J. Propul. Power
,
26
(
3
), pp.
556
561
.10.2514/1.26709
13.
Crawley
,
E. F.
,
1979
, “
The Natural Modes of Graphite/Epoxy Cantilever Plates and Shells
,”
J. Composite Mater.
,
13
, pp.
195
205
.10.1177/002199837901300302
14.
Caprino
,
G.
, and
Crivelli-Visconti
,
I.
,
1982
, “
A Note on Specially-Orthotropic Laminates
,”
J. Composite Mater.
,
16
, pp.
395
399
.10.1177/002199838201600504
15.
Gunnink
,
J. W.
,
1983
, “
Comment on a Note on Specially Orthotropic Laminates
,”
J. Composite Mater.
,
17
, pp.
508
510
.10.1177/002199838301700603
16.
Chamis
,
C. C.
,
1975
, “
A Theory for Predicting Composite Laminate Warpage Resulting From Fabrication
,”
Society of the Plastics Industry 30th Anniversary Technical Conference, Reinforced Plastics/Composites Institute, Washington, DC, February 4–7.
17.
Minich
,
M. D.
, and
Chamis
,
C. C.
,
1975
, “
Analytical Displacements and Vibrations of Cantilevered Unsymmetric Fiber Composite Laminates
,” NASA TM X-71699.
18.
Schmit
, Jr.,
L. A.
, and
Farshi
,
B.
,
1973
, “
Optimum Laminate Design for Strength and Stiffness
,”
Int. J. Numer. Methods Eng.
,
7
, pp.
519
536
.10.1002/nme.1620070410
19.
Rao
,
S. S.
, and
Singh
,
K.
,
1979
, “
Optimum Design of Laminates With Natural Frequency Constraints
,”
J. Sound Vib.
,
67
(
1
), pp.
101
112
.10.1016/0022-460X(79)90505-4
20.
Rao
,
S. S.
,
1978
,
Optimization: Theory and Applications
,
Wiley Eastern Limited
,
New Delhi
.
21.
Rao
,
S. S.
,
1975
, “
Optimum Design of Structures Under Shock and Vibration Environment
,”
Shock Vib. Dig.
,
7
, pp.
61
70
.10.1177/058310247500701206
22.
Bert
,
C. W.
,
1977
, “
Optimal Design of Composite-Material Plate to Maximize Its Fundamental Frequency
,”
J. Sound Vib.
,
50
(
2
), pp.
229
237
.10.1016/0022-460X(77)90357-1
23.
Olhoff
,
N.
,
1976
, “
A Survey of Optimal Design of Vibrating Structural Elements. Part I—Theory
,”
Shock Vib. Dig.
,
8
, pp.
3
10
.
24.
Kiusalaas
,
J.
, and
Shaw
,
R. C. J.
,
1978
, “
An Algorithm for Optimal Structural Design With Frequency Constraints
,”
Int. J. Numer. Methods Eng.
,
13
(
2
), pp.
283
295
.10.1002/nme.1620130206
25.
Haftka
,
R. T.
, and
Gurdal
Z.
,
1991
,
Elements of Structural Optimization
, 3rd ed.,
Kluwer Academic
,
London
.
26.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component Mode-Based Reduced-Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
27.
Shiau
,
T. N.
, and
Chang
,
S. J.
,
1991
, “
Optimization of Rotating Blades With Dynamic Behavior Constraints
,”
ASCE J. Aerosp. Eng.
,
4
, pp.
127
144
.10.1061/(ASCE)0893-1321(1991)4:2(127)
28.
Lin
,
C. C.
, and
Yu
,
A. J.
,
1991
, “
Optimum Weight Design of Composite Laminated Plates
,”
Comput. Struct.
,
38
(
5/6
), pp.
581
587
.10.1016/0045-7949(91)90009-B
29.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2003
, “
A Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,” Proceeding of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Norfolk, VA, April 7–10,
AIAA
Paper 2003-1545.10.2514/6.2003-1545
30.
Shiau
,
T. N.
,
Yu
,
Y. D.
, and
Kuo
,
C. P.
,
1993
, “
Optimum Design of Rotating Laminate Blade With Dynamic Behavior Constraints
,” ASME Paper No. 93-GT-268.
31.
Ottarsson
,
G. S.
, and
Pierre
,
C.
,
1993
, “
A Transfer Matrix Approach to Vibration Localization in Mistuned Blade Assemblies
,” ASME Paper No. 93-GT-115.
32.
Ottarsson
,
G. S.
,
1994
, “
Dynamic Modeling and Vibration Analysis of Mistuned Bladed Disks
,” Ph.D. thesis,
University of Michigan
, Ann Arbor, MI.
33.
Ottarsson
,
G. S.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1994
, “
A Reduced-Order Modeling Technique for Mistuned Bladed Disks
,”
AIAA
-94-1640-CP, pp.
2552
2562
10.2514/6.1994-1640.
34.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
647
650
.10.1115/1.2817033
35.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
893
900
.10.1115/1.1385197
36.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Forced Response of Turbine Engine Bladed Disks and Sensitivity to Harmonic Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
113
120
.10.1115/1.1498269
37.
Kuhn
,
H. W.
, and
Tucker
,
A. W.
,
1951
, “
Nonlinear Programming
,”
Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, July 31–August 12, 1950, University of California Press
,
Berkeley
, pp.
481
492
.
38.
Golub
,
G. H.
, and
VanLoan
,
C. F.
,
1996
,
Matrix Computation
,
The John Hopkins University Press
, Baltimore, MD.
39.
Kantorovich
,
L. V.
, and
Krylov
,
V. I.
,
1958
,
Approximate Methods of Higher Analysis
,
P. Noordhoff, Ltd.
,
Groningen
, The Netherlands, English translation.
40.
Chakraverty
,
S.
,
Bhat
,
R. B.
, and
Stiharu
,
I.
,
1999
, “
Recent Research on Vibration of Structures Using Boundary Characteristic Orthogonal Polynomials in the Rayleigh-Ritz Method
,”
Shock Vib. Dig.
,
31
(
3
), pp.
187
194
.10.1177/058310249903100301
41.
Jones
,
R. M.
,
1975
,
Mechanics of Composite Materials
,
McGraw-Hill
,
New York
.
42.
McGee
,
O. G.
, and
Chu
,
H. R.
,
1994
, “
Three-Dimensional Vibration Analysis of Rotating Laminated Composite Blades
,”
ASME J. Eng. Gas Turbine Eng. Power
,
116
(
3
), pp.
663
671
.10.1115/1.2906871
43.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
1987
,
Gas Turbine Theory
, 3rd ed.,
Longman Scientific and Technical
, Essex, UK, Chaps. 5 and 7.
44.
Graham
,
R. W.
, and
Guentert
,
E. C.
,
1965
, “
Compressor Stall and Blade Vibration
,”
Aerodynamic Design of Axial-Flow Compressors
, NASA SP-36, Chap. XI.
45.
Meher-Hornji
,
C. B.
,
1995
, “
Blading Vibration and Failures in Gas Turbines, Part A: Blading Dynamics and the Operating Environment
,” ASME Paper No. 95-GT-418.
46.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.10.1115/1.1451753
47.
Wei
,
S. T.
, and
Pierre
,
C.
,
1990
, “
Statistical Analysis of the Forced Response of Mistuned Cyclic Assemblies
,”
AIAA J.
,
28
(
5
), pp.
861
868
.10.2514/3.25131
48.
Wisler
,
D. C.
,
1988
,
Advanced Compressor and Fan Systems, GE Aircraft Engines, Cincinnati, OH, Copyright 1988 by General Electric Co.
All Rights Reserved (also 1986
Lecture to ASME Turbomachinery Institute
,
Ames IO
).
49.
Lee
,
S. M.
1990
,
International Encyclopedia of Composites
, Vol.
5
, Wiley-VCH Verlag GmbH, Weinheim, Germany.
50.
Azzi
,
V. D.
, and
Tsai
,
S. W.
,
1965
, “
Anisotropic Strength of Components
,”
Exp. Mech.
,
5
, pp.
286
288
.
51.
Vinson
,
J. R.
, and
Sierakowski
,
R. L.
,
1987
,
The Behavior of Structures Composed of Composite Materials
,
Martinus Nijhoff
, Leiden, The Netherlands.
52.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1990
,
Numerical Recipes: The Art of Scientific Computing (FORTRAN Version)
,
Cambridge University Press
,
Cambridge, UK
.
53.
Stewart
,
G. W.
,
1970
,
Introduction to Matrix Computation
,
Academic
,
New York
.
54.
Stoer
,
J.
, and
Bulirsch
,
R.
,
1980
,
Introduction to Numerical Analysis
,
Springer
,
New York
, Article 6.7.
55.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
, Essex, UK, Chap. 10.
56.
Cumpsty
,
N. A.
,
1992
, “
Aerodynamics of Aircraft Engines—Stride and Stumbles
,” M.I.T., Cambridge, MA, GTL Report 213.
57.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
.
58.
Kerrebrock
,
J. L.
,
1992
,
Aircraft Engines and Gas Turbines
, 2nd ed.,
The MIT Press
,
Cambridge, MA.
59.
Khalak
,
A
,
2002
, “
A Framework for Flutter Clearance of Aeroengine Blades
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
1003
1010
.10.1115/1.1492832
60.
Armstrong
,
E. K.
, and
Stevenson
,
M. A.
,
1960
, “
Some Practical Aspects of Compressor Blade Vibration
,”
J. R. Aeronaut. Soc.
,
64
, pp.
117
130
.
61.
Kielb
,
R. E.
,
1993
, “
Turbomachinery Aaeroelasticity
,”
Lecture Notes and Private Communication. Structural Mechanics Lecture Series
,
Georgia Institute of Technology
,
Atlanta, GA
.
62.
Fleeter
,
S.
, and
Jay
,
R. L.
,
1987
, “
Unsteady Aerodynamic Measurements in Flutter Research
,”
AGARD Manual No. AG-298, Aeroelasticity of Axial-Flow Turbomachines, Volume 1: Unsteady Turbomachinery Aerodynamics
.
63.
Jay
,
R. L.
, and
Fleeter
,
S.
,
1987
, “
Unsteady Aerodynamic Measurements in Forced Vibration Research
,”
AGARD Manual No. AG-298, Aeroelasticity of Axial-Flow Turbomachines, Volume 1: Unsteady Turbomachinery Aerodynamics
, NATO Science and Technology Organization.
64.
Azzi
,
V. D.
, and
Tsai
,
S.W.
,
1965
, “
Anisotropic Strength of Composites
,”
Exp. Mech.
,
5
, pp.
283
288
.10.1007/BF02326292
65.
Dorn
,
W. S.
,
1960
, “
Duality in Quadratic Programming
,”
Q. Appl. Math.
,
18
(
2
), pp.
155
162
.
66.
Dorn
,
W. S.
,
1960
, “
A Duality Theorem for Convex Programs
,”
IBM J. Res. Dev.
,
4
(
4
), pp.
407
413
.10.1147/rd.44.0407
67.
Wolfe
,
P.
,
1963
, “
A Duality Theorem for Nonlinear Programming
,”
Q. Appl. Math.
,
19
, pp.
239
244
.
68.
Falk
,
J. E.
,
1967
, “
Lagrange Multipliers and Nonlinear Programming
,”
J. Math. Anal. Appl.
,
19
, pp.
141
159
.10.1016/0022-247X(67)90028-5
69.
Fox
,
R. L.
,
1973
,
Optimization Methods for Engineering Design
,
Addison-Wesley
,
Reading, MA.
70.
Fleury
,
C.
,
1979
, “
Structural Weight Optimization by Dual Methods of Convex Programming
,”
Int. J. Numer. Methods Eng.
,
14
(
12
), pp.
1761
1783
.10.1002/nme.1620141203
71.
Fiacco
,
A. V.
, and
McCormick
,
G. P.
,
1968
,
Nonlinear Programming: Sequential Unconstrained Minimization Techniques
,
John Wiley
,
New York
.
You do not currently have access to this content.