This paper describes the coupling of a Multi-Dimensional Harmonic Balance Method (MHBM) with a Polynomial Chaos Expansion (PCE) to determine the dynamic response of quasi-periodic dynamic systems subjected to multiple excitations and uncertainties. The proposed method will be applied to a rotor system excited at its support. Uncertainties considered include both material and geometrical parameters as well as excitation sources. To demonstrate the effectiveness and validity of the proposed numerical approach, the results that include mean, variation of the response, envelopes of the Frequency Response Functions and orbits will be systematically compared to a classical Monte Carlo approach.

References

1.
Didier
,
J.
,
Sinou
,
J.-J.
, and
Faverjon
,
B.
,
2008
, “
Study of the Non-Linear Dynamic Response of a Rotor System with Faults and Uncertainties
,”
J. Sound Vib.
,
331
(
3
), pp.
671
703
.10.1016/j.jsv.2011.09.001
2.
Guskov
,
M.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
,
2008
, “
Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,”
Mech. Res. Commun.
,
35
, pp.
537
545
.10.1016/j.mechrescom.2008.05.002
3.
Benaroya
,
H.
, and
Rehak
,
M.
,
1988
, “
Finite Element Methods in Probabilistic Structural Analysis: A Selective Review
,”
Appl. Mech. Rev.
,
41
(
5
), pp.
201
213
.10.1115/1.3151892
4.
Yamazaki
,
F.
,
Shinozuka
,
M.
, and
Dasgupta
,
G.
,
1988
, “
Neumann Expansion for Stochastic Finite Element Analysis
,”
ASCE J. Eng. Mech.
,
114
(
8
), pp.
1335
1354
.10.1061/(ASCE)0733-9399(1988)114:8(1335)
5.
Ghanem
,
R.
, and
Spanos
,
P.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
Berlin
.
6.
Duchemin
,
M.
,
Berlioz
,
A.
, and
Ferraris
,
G.
,
2006
, “
Dynamic Behavior and Stability of a Rotor under Base Excitation
,”
J. Vib. Acoust.
128
(
5
), p.
576
586
.10.1115/1.2202159
7.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1990
,
Rotordynamics-Prediction in Engineering
,
John Wiley & Sons
,
New York
.
8.
Oncescu
,
F.
,
Lakis
,
A. A.
, and
Ostiguy
,
G.
,
2001
, “
Investigation of the Stability and Steady State Response of Asymmetric Rotors, using Finite Element Formulation
,”
J. Sound Vib.
,
245
(
2
), pp.
303
328
.10.1006/jsvi.2001.3570
9.
Coudeyras
,
N.
,
Nacivet
,
S.
, and
Sinou
,
J.-J.
,
2009
, “
Periodic and Quasi-Periodic Solutions for Multi-Instabilities Involved in Brake Squeal
,”
J. Sound Vib.
,
328
(
4-5
), pp.
520
540
.10.1016/j.jsv.2009.08.017
10.
Loève
,
M.
, 1977
,
Probability Theory
, 4th ed.,
Springer-Verlag
,
Berlin
.
11.
Yamamoto
,
T.
, and
Ishida
,
Y.
,
2001
,
Linear and Nonlinear Rotordynamics. A Modern Treatment With Applications
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.