This paper describes the coupling of a Multi-Dimensional Harmonic Balance Method (MHBM) with a Polynomial Chaos Expansion (PCE) to determine the dynamic response of quasi-periodic dynamic systems subjected to multiple excitations and uncertainties. The proposed method will be applied to a rotor system excited at its support. Uncertainties considered include both material and geometrical parameters as well as excitation sources. To demonstrate the effectiveness and validity of the proposed numerical approach, the results that include mean, variation of the response, envelopes of the Frequency Response Functions and orbits will be systematically compared to a classical Monte Carlo approach.
Issue Section:
Research Papers
References
1.
Didier
, J.
, Sinou
, J.-J.
, and Faverjon
, B.
, 2008
, “Study of the Non-Linear Dynamic Response of a Rotor System with Faults and Uncertainties
,” J. Sound Vib.
, 331
(3
), pp. 671
–703
.10.1016/j.jsv.2011.09.0012.
Guskov
, M.
, Sinou
, J.-J.
, and Thouverez
, F.
, 2008
, “Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,” Mech. Res. Commun.
, 35
, pp. 537
–545
.10.1016/j.mechrescom.2008.05.0023.
Benaroya
, H.
, and Rehak
, M.
, 1988
, “Finite Element Methods in Probabilistic Structural Analysis: A Selective Review
,” Appl. Mech. Rev.
, 41
(5
), pp. 201
–213
.10.1115/1.31518924.
Yamazaki
, F.
, Shinozuka
, M.
, and Dasgupta
, G.
, 1988
, “Neumann Expansion for Stochastic Finite Element Analysis
,” ASCE J. Eng. Mech.
, 114
(8
), pp. 1335
–1354
.10.1061/(ASCE)0733-9399(1988)114:8(1335)5.
Ghanem
, R.
, and Spanos
, P.
, 1991
, Stochastic Finite Elements: A Spectral Approach
, Springer-Verlag
, Berlin
.6.
Duchemin
, M.
, Berlioz
, A.
, and Ferraris
, G.
, 2006
, “Dynamic Behavior and Stability of a Rotor under Base Excitation
,” J. Vib. Acoust.
128
(5
), p. 576
–586
.10.1115/1.22021597.
Lalanne
, M.
, and Ferraris
, G.
, 1990
, Rotordynamics-Prediction in Engineering
, John Wiley & Sons
, New York
.8.
Oncescu
, F.
, Lakis
, A. A.
, and Ostiguy
, G.
, 2001
, “Investigation of the Stability and Steady State Response of Asymmetric Rotors, using Finite Element Formulation
,” J. Sound Vib.
, 245
(2
), pp. 303
–328
.10.1006/jsvi.2001.35709.
Coudeyras
, N.
, Nacivet
, S.
, and Sinou
, J.-J.
, 2009
, “Periodic and Quasi-Periodic Solutions for Multi-Instabilities Involved in Brake Squeal
,” J. Sound Vib.
, 328
(4-5
), pp. 520
–540
.10.1016/j.jsv.2009.08.01710.
Loève
, M.
, 1977, Probability Theory
, 4th ed., Springer-Verlag
, Berlin
.11.
Yamamoto
, T.
, and Ishida
, Y.
, 2001
, Linear and Nonlinear Rotordynamics. A Modern Treatment With Applications
, John Wiley & Sons
, New York
.Copyright © 2012 by ASME
You do not currently have access to this content.