Abstract

The objective of this paper is to derive the dynamic equations of a tether as it is deployed or retrieved by a winch on a satellite orbiting around Earth using Newton’s laws and Hamilton’s principle and show the equivalence of the two methods. The main feature of this continuous system is the presence of a variable length domain with discontinuities. Discontinuity is present at the boundary of deployment because of the assumption that the stowed part of the cable is unstretched and the deployed part is not. Developing equations for this variable domain system with discontinuities, specially using Hamilton’s principle, is a nontrivial task and we believe that it has not been adequately addressed in the literature.

1.
Mankala
,
K. K.
, and
Agrawal
,
S. K.
, 2005, “
Dynamic Modeling and Simulation of Satellite Tethered Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
2
), pp.
144
156
.
2.
Leamy
,
M. J.
,
Noor
,
A. K.
, and
Wasfy
,
T. M.
, 2001, “
Dynamic Simulation of a Tethered Satellite System Using Finite Elements and Fuzzy Sets
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
37–38
), pp.
4847
4870
.
3.
Forward
,
R. L.
,
Hoyt
,
R. P.
, and
Uphoff
,
C. W.
, 2000, “
Terminator Tether: A Spacecraft Deorbit Device
,”
J. Spacecr. Rockets
0022-4650,
37
(
2
), pp.
187
196
.
4.
Beletsky
,
V. V.
, and
Levin
,
E. M.
, 1993,
Dynamics of Space Tether Systems
,
American Astronautical Society
,
San Diego
.
5.
Kuhn
,
A.
,
Steiner
,
W.
,
Zemann
,
J.
,
Dinevski
,
D.
, and
Troger
,
H.
, 1995, “
A Comparison of Various Mathematical Formulations and Numerical Solution Methods for the Large Amplitude Oscillations of a String Pendulum
,”
Appl. Math. Comput.
0096-3003,
67
, pp.
227
264
.
6.
Steiner
,
W.
,
Zemann
,
J.
,
Steindl
,
A.
, and
Troger
,
H.
, 1995, “
Numerical Study of Large Amplitude Oscillations of a Two-Satellite Continuous Tether System With a Varying Length
,”
Acta Astronaut.
0094-5765,
35
(
9–11
), pp.
607
621
.
7.
Misra
,
A. K.
and
Modi
,
V. J.
, 1983, “
Dynamics and Control of Tether Connected Two-Body Systems—A Brief Review
,”
Space 2000: Selections of Papers Presented at the 33rd Congress of the International Astronautical Federation
,
L. G.
Napolitano
, ed., Paris, France, Sept. 26–Oct. 2, AIAA, Reston. pp.
473
514
.
8.
Min
,
B. N.
,
Misra
,
A. K.
, and
Modi
,
V. J.
, 1999, “
Nonlinear Free Vibration of a Spinning Tether
,”
J. Astronaut. Sci.
0021-9142,
47
(
1–2
), pp.
1
23
.
9.
Steiner
,
W.
, 1994, “
Numerische Lösungen der Geometrisch Exakten Bewegungsgleichungen Verkabelter Satellitensysteme
,” Ph.D. dissertation, Technical University of Vienna, Vienna.
10.
Yuhong
,
Z.
, 2004, “
Modeling and Control of Flexible Cable Transporter Systems With Arbitrary Axial Velocity
,” Ph.D. dissertation, University of Delaware, Newark.
11.
Yuhong
,
Z.
,
Agrawal
,
S. K.
, and
Hagedorn
,
P.
, 2005, “
Longitudinal Vibration Modeling and Control of a Flexible Transporter System With Arbitrarily Varying Cable Lengths
,”
J. Vib. Control
1077-5463,
11
(
3
), pp.
431
456
.
12.
Crellin
,
E. B.
,
Janssens
,
F.
,
Poelaert
,
D.
,
Steiner
,
W.
, and
Troger
,
H.
, 1997, “
On Balance and Variational Formulations of the Equation of Motion of a Body Deploying Along a Cable
,”
ASME J. Appl. Mech.
0021-8936,
64
(
2
), pp.
369
374
.
13.
Poelaert
,
D. H. L.
,
Janssens
,
F.
, and
Crellin
,
E. B.
, 1996, “
Velocity Discontinuities for Deploying Cables
,”
Proceedings of ESA Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies
,
ESTEC Conference Centre
,
Noordwijk, Netherlands
, Jun. 3–5.
14.
Gelfand
,
I. M.
, and
Fomin
,
S.
, 1963,
Calculus of Variations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Meirovitch
,
L.
, 2000,
Principles and Techniques of Vibrations
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.