A numerical method based on the Rayleigh-Ritz method has been presented for the forced vibration of open cylindrical shells. The equations are derived from the three-dimensional strain-displacement relations in the cylindrical coordinate system. The middle surface of the shell represents the geometry, which is defined by an angle that subtends the curved edges, the length, and the thickness. The displacement fields are generated with a predefined set of grid points on the middle surface using considerably high-order polynomials. Each grid point has five degrees of freedom, viz., three translational components along the cylindrical coordinates and two rotational components of the normal to the middle surface. Then the strain and kinetic energy expressions are obtained in terms of these displacement fields. The differential equation governing the vibration characteristics of the shell is expressed in terms of the mass, stiffness, and the load consistent with the prescribed displacement fields. The transient response of the shell with and without damping is sought by transforming the equation of motion to the state-space model and then the state-space differential equations are solved using the Runge-Kutta algorithm.

1.
Leissa
,
A. W.
, 1973,
Vibration of Shells
, NASA SP-288, Washington, DC.
2.
Kraus
,
H.
, and
Kalnins
,
A.
, 1965, “
Transient Vibration of Thin Elastic Shells
,”
J. Acoust. Soc. Am.
0001-4966,
38
(
6
), pp.
994
1002
.
3.
Spillers
,
W. R.
, 1965, “
Wave Propagation in a Thin Cylindrical Shell
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
346
350
.
4.
Leonard
,
R. W.
, and
Budiansky
,
B.
, 1954, “
On Traveling Waves in Beams
,” Natl. Adv. Comm. Aeron. Report No. 1173, pp.
1
27
.
5.
Wilkinson
,
J. P.
, 1966, “
Transient Response of Thin Elastic Shells
,”
J. Acoust. Soc. Am.
0001-4966,
39
(
5
), pp.
895
898
.
6.
Johnson
,
D. E.
, and
Greif
,
R.
, 1966, “
Dynamic Response of a Cylindrical Shell: Two Numerical Methods
,”
AIAA J.
0001-1452,
4
(
3
), pp.
486
494
.
7.
Foss
,
K. A.
, 1957, “
Co-ordinates Which Uncouple the Equations of Motion of Damped Linear Dynamic Systems
,” ASME Applied Mechanics Division, Paper No. 57-A-86.
8.
Caughey
,
T. K.
, 1960, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
27
, pp.
269
271
.
9.
Scanlan
,
R. H.
, and
Mendelson
,
A.
, 1963, “
Structural Damping
,”
AIAA J.
0001-1452,
1
(
4
), pp.
938
939
.
10.
Cauchey
,
T.
, and
O’Kelly
,
M. E. J.
, 1965, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
583
588
.
11.
Clough
,
R. W.
, and
Wilson
,
E. L.
, 1971, “
Dynamic Finite Element Analysis of Arbitrary Thin Shells
,”
Comput. Struct.
0045-7949,
1
, pp.
33
56
.
12.
Wilson
,
E. L.
, and
Penzien
,
J.
, 1972, “
Evaluation of Orthogonal Damping Matrices
,”
Int. J. Numer. Methods Eng.
0029-5981,
4
, pp.
5
10
.
13.
Tsui
,
T.-Y.
, 1972, “
Dynamic Response of Moderately Thick Cylindrical Panels
,”
AIAA J.
0001-1452,
10
(
5
), pp.
565
566
.
14.
Krieg
,
R. D.
, and
Key
,
S. W.
, 1973, “
Transient Shell Response by Numerical Time Integration
,”
Int. J. Numer. Methods Eng.
0029-5981,
7
, pp.
273
286
.
15.
Strenkowski
,
J.
, and
Pilkey
,
W.
, 1978, “
Transient Response of Continuous Elastic Structures With Viscous Damping
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
877
882
.
16.
Saigal
,
S.
, and
Yang
,
T. Y.
, 1985, “
Nonlinear Dynamic Analysis With a 48 D.O.F. Curved Thin Shell Element
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
1115
1128
.
17.
Singh
,
A. V.
, 1980, “
Transient Response of Thin Elastic Spherical Shells
,”
J. Acoust. Soc. Am.
0001-4966,
68
(
1
), pp.
191
197
.
18.
Phillips
,
C. L.
, and
Harbor
,
R. D.
, 1996,
Feedback Control Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
,
A. S.
, 1993,
Elasticity: Theory and Applications
,
Krieger
,
Melbourne, FL
.
20.
Kandasamy
,
S.
, and
Singh
,
A. V.
, 2006, “
Free Vibration Analysis of Open Skewed Circular Cylindrical Shells
,”
J. Sound Vib.
0022-460X,
290
, pp.
1100
1118
.
21.
Weaver
,
W.
, Jr.
, and
Johnston
,
P. R.
, 1984,
Finite Elements for Structural Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.