Abstract

The hybrid squeeze-film damper bearing with active control is proposed in this paper. The pressure distribution and the dynamics of a rigid rotor supported by such bearing are studied. A PD (proportional-plus-derivative) controller is used to stabilize the rotor-bearing system. Numerical results show that, due to the nonlinear factors of oil film force, the trajectory of the rotor demonstrates a complex dynamics with rotational speed ratio s. Poincare´ maps, bifurcation diagrams, and power spectra are used to analyze the behavior of the rotor trajectory in the horizontal and vertical directions under different operating conditions. The maximum Lyapunov exponent and fractal dimension concepts are used to determine if the system is in a state of chaotic motion. Numerical results show that the maximum Lyapunov exponent of this system is positive and the dimension of the rotor trajectory is fractal at the nondimensional speed ratio s=3.0, which indicate that the rotor trajectory is chaotic under such operation condition. In order to avoid the nonsynchronous chaotic vibrations, an increased proportional gain is applied to control this system. It is shown that the rotor trajectory will leave chaotic motion to periodic motion in the steady state under control action.

1.
Holmes
,
A. G.
,
Ettles
,
C. M.
, and
Mayes
,
I. W.
,
1978
, “
Aperiodic Behavior of a Rigid Shaft in Short Journal Bearings
,”
Int. J. Numer. Methods Eng.
,
12
, pp.
695
702
.
2.
Nikolajsent
,
J. I.
, and
Holmes
,
R.
,
1979
, “
Investigation of Squeeze-Film Isolators for the Vibration Control of a Flexible Rotor
,”
ASME J. Mech. Des.
21
, pp.
247
252
.
3.
Sykes
,
J. E. H.
, and
Holmes
,
R.
,
1990
, “
The Effect of Bearing Misalignment on the Non-Linear Vibration of Aero-Engine Rotor-Damper Assemblies
,”
Proceedings Institution of Mechanical Engineers
,
204
, pp.
83
99
.
4.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis of a Modified Jeffcot Rotor with Bearing Clearances
,”
Nonlinear Dyn.
,
1
, pp.
221
241
.
5.
Ehrich
,
F. F.
,
1991
, “
Some Observations of Chaotic Vibration Phenomena in High-Speed Rotordynamics
,”
ASME J. Vibr. Acoust.
,
113
, pp.
50
57
.
6.
Zhao
,
J. Y.
,
Linnett
,
I. W.
, and
Mclean
,
L. J.
,
1994
, “
Subharmonic and Quasi-Periodic Motion of an Eccentric Squeeze Film Damper-Mounted Rigid Rotor
,”
ASME J. Vibr. Acoust.
,
116
, pp.
357
363
.
7.
Brown
,
R. D.
,
Addison
,
P.
, and
Chan
,
A. H. C.
,
1994
, “
Chaos in the Unbalance Response of Journal Bearings
,”
Nonlinear Dyn.
,
5
, pp.
421
432
.
8.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1996
, “
Chaotic Motions of a Rigid Rotor in Short Journal Bearings
,”
Nonlinear Dyn.
,
10
, pp.
251
269
.
9.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Short Bearings. Part I: Theoretical Analysis
,”
Nonlinear Dyn.
,
14
, pp.
57
87
.
10.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Short Bearings. Part II: Experimental Analysis
,”
Nonlinear Dyn.
,
14
, pp.
157
189
.
11.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-length Continuation Method—Application to Rotor Systems
,”
ASME J. Vibr. Acoust.
,
119
, pp.
9
20
.
12.
Chen
,
C. L.
, and
Yau
,
H. T.
,
1998
, “
Chaos in the Imbalance Response of a Flexible Rotor Supported by Oil Film Bearings with Non-Linear Suspension
,”
Nonlinear Dyn.
,
16
, pp.
71
90
.
13.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From A Time Series
,”
Physica D
,
16D
, pp.
285
317
.
14.
Grassberger
,
P.
, and
Proccacia
,
I.
,
1983
, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
,
50
, pp.
346
349
.
15.
Vance, J. M. 1988, Rotordynamics of Turbomachinery, John Wiley & Sons, Inc., New York.
16.
Pinku, O., and Sternlicht, B., 1961, Theory of Hydrodynamic Lubrication, McGraw Hill, New York, NY.
17.
Nayfeh, A. H., 1995, Applied Nonlinear Dynamics, John Wiley & Sons, Inc., New York.
18.
Smith
,
L. A.
,
1988
, “
Intrinsic Limits on Dimension Calculations
,”
Phys. Lett. A
,
133
, pp.
283
288
.
You do not currently have access to this content.