In this paper a method for the parametric sensitivity of acoustic-structural coupled systems is presented. The symmetrical Eulerian formulation is applied in order to calculate the coupled frequencies and modes. From a state space formulation of the problem a sensitivity algorithm is developed to obtain the derivatives of the coupled frequencies and modes of the system versus a design parameter vector. The algorithm is based on the properties of the complex conjugate eigenvalues obtained from the solution of the state space equation. Numerical examples from an acoustic rectangular cavity backed by a simply supported plate are presented. The comparison reveals a good agreement between numerical and analytical results. [S0739-3717(00)00802-3]

1.
Lyon
,
H.
,
1963
, “
Noise Reduction in Rectangular Enclosures with One Flexible Wall
,”
J. Acoust. Soc. Am.
,
35
, pp.
1791
1797
.
2.
Pretlove
,
J.
,
1965
, “
Free Vibration of a Rectangular Panel Backed by a Closed Cavity
,”
J. Sound Vib.
,
2
, pp.
197
209
.
3.
Cura`
,
F.
,
Curti
,
G.
, and
Mantovani
,
M.
,
1996
, “
Study of the Forced Response of a Clamped Circular Plate Coupled to a Uni-dimensional Acoustic Cavity
,”
J. Sound Vib.
,
190
, No.
4
, pp.
661
676
.
4.
Craggs
,
A.
,
1971
, “
The Transient Response of a Coupled Plate-acoustic System Using Plate and Acoustic Finite Elements
,”
J. Sound Vib.
,
15
, pp.
509
528
.
5.
Petyt
,
M.
,
Lea
,
J.
, and
Koopman
,
G. H.
,
1976
, “
A Finite Element Method for Determining the Acoustic Modes of Irregular
,”
J. Sound Vib.
,
45
, pp.
495
502
.
6.
Nefske
,
D. J.
,
Wolf
, Jr.,
J. A.
, and
Howell
,
L. J.
,
1982
, “
Structural-acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice
,”
J. Sound Vib.
,
80
, No.
2
, pp.
247
266
.
7.
Wolf
, Jr.,
J. A.
,
1977
, “
Modal Synthesis for Combined Structural-acoustic Systems
,”
Am. Inst. Aeronaut. Astronaut.
,
15
, No.
5
, pp.
743
745
.
8.
Sung
,
S. H.
, and
Nefske
,
D. J.
,
1986
, “
Component Mode Synthesis of a Vehicle Structural-acoustic System Model
,”
Am. Inst. Aeronaut. Astronaut.
,
24
, No.
8
, pp.
1021
1026
.
9.
Luo
,
J.
, and
Gea
,
H. C.
,
1997
, “
Modal Sensitivity Analysis of Coupled Acoustic-structural Systems
,”
ASME J. Vibr. Acoust.
,
119
, pp.
545
550
.
10.
Dowell
,
E. H.
,
Gorman
, III,
G. F.
, and
Smith
,
D. A.
,
1977
, “
Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparisons with Experiment
,”
J. Sound Vib.
,
54
, No.
4
, pp.
519
542
.
11.
Guy
,
R. W.
, and
Bhattacharya
,
M. C.
,
1973
, “
The Transmission of Sound Through a Cavity-backed Finite Plate
,”
J. Sound Vib.
,
27
, pp.
207
223
.
12.
Pan
,
J.
, and
Bies
,
D. A.
,
1990
, “
The Effect of Fluid-structural Coupling on Sound Waves in an Enclosure—Theoretical Part
,”
J. Acoust. Soc. Am.
,
87
, No.
2
, pp.
691
707
.
13.
Everstine
,
G. C.
,
1981
, “
A Symmetric Potential Formulation for Fluid-structure Interaction
,”
J. Sound Vib.
,
79
, No.
1
, pp.
157
160
.
14.
Bokil
,
V. B.
, and
Shirahatti
,
U. S.
,
1994
, “
A Technique for the Modal Analysis of Sound-structure Interaction Problems
,”
J. Sound Vib.
,
173
, No.
1
, pp.
23
41
.
15.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
Am. Inst. Aeronaut. Astronaut.
,
12
, pp.
1337
1342
.
16.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
Am. Inst. Aeronaut. Astronaut.
,
6
, No.
12
, pp.
2426
2429
.
17.
Rogers
,
L. C.
,
1970
, “
Derivatives of Eigenvalues and Eigenvectors
,”
Am. Inst. Aeronaut. Astronaut.
,
8
, pp.
943
944
.
18.
Nelson
,
R. B.
,
1976
, “
Simplified Calculations of Eigenvector Derivatives
,”
Am. Inst. Aeronaut. Astronaut.
,
14
, No.
9
, pp.
1201
1205
.
19.
Wang
,
B. P.
, and
Caldwell
,
S. P.
,
1993
, “
An Improved Approximate Method for Computing Eigenvector Derivatives
,”
Finite Elem. Anal. Design
,
14
, No.
4
, pp.
381
392
.
20.
Smith
,
D. C.
, and
Bernhard
,
R. J.
,
1992
, “
Computation of Acoustic Shape Design Sensitivity Using a Boundary Element Method
,”
ASME J. Vibr. Acoust.
,
114
, No.
1
, pp.
127
132
.
21.
Salagame
,
R. R.
,
Belagundu
,
A. D.
, and
Koopman
,
G. H.
,
1995
, “
Analytical Sensitivity of Acoustic Power Radiated from Plates
,”
ASME J. Vibr. Acoust.
,
114
, No.
2
, pp.
178
186
.
22.
Ma
,
Z. D.
, and
Hagiwara
,
I.
,
1991
, “
Sensitivity Analysis Methods for Coupled Acoustic-structural Systems, Part I: Modal Sensitivities
,”
Am. Inst. Aeronaut. Astronaut.
,
29
, No.
11
, pp.
1787
1795
.
23.
Scarpa
,
F.
, and
Curti
,
G.
,
1999
, “
A Method for the Parametric Sensitivity of Interior Acousto-structural Coupled Systems
,”
Appl. Acoust.
,
58
, No.
4
, pp.
451
467
.
24.
Seiranyan
,
A.
, and
Sharanyuk
,
A. V.
,
1987
, “
Sensitivity Analysis of Vibrational Frequencies of Mechanical Systems
,”
Mechanics of Solids
,
22
, No.
2
, pp.
37
41
.
25.
Kim
,
Y.
,
Lee
,
S.
, and
Junkins
,
J. L.
,
1995
, “
Eigenvector Derivatives for Mechanical Second Order Systems
,”
J. Guid. Control. Dyn.
,
18
, No.
4
, pp.
899
906
.
26.
Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, New York, 1965, Chap. 2.
27.
Soedel, W., Vibration of Plates and Shells, Marcel Dekker, New York, 1981, Chap. 3.
You do not currently have access to this content.