Graphical Abstract Figure

Example of misleading extrapolation for grids with fixed y+ at the wall.

Graphical Abstract Figure

Example of misleading extrapolation for grids with fixed y+ at the wall.

Close modal

Abstract

In the present paper, we focus on the simulation of viscous flows at high Reynolds numbers using the Reynolds-averaged Navier–Stokes (RANS) equations. Time-averaging is used to define the mean flow properties and only deterministic simulations are considered. Therefore, numerical errors are a consequence of round-off, iterative and discretization errors. In carefully performed simulations, round-off and iterative errors are reduced to negligible levels when compared to the discretization error and so the numerical error is dominated by the contribution of the discretization error. The use of grid refinement studies is one of the most flexible and popular techniques for the estimation of discretization errors for steady simulations. Several methods have been proposed in the open literature and most of them share common features. The discretization error of a quantity of interest is described as a function of the typical cell size by power series expansions. The estimation of the exact solution requires numerical solutions in more than one grid and so a family of (nearly) geometrical similar grids needs to be generated. The requirement of grid similarity is a consequence of the definition of the typical cell size. In the numerical solution of the RANS equations, the determination of the shear-stress at the wall τw can be performed in two alternative ways: directly from its definition, or using wall functions. The grid refinement strategy required by each case is significantly different. In the first option, the near-wall cell must be systematically refined as all the remaining grid cells. When wall functions are used, the size of the near-wall cell size should remain fixed. In this paper, we present the consequences of using the wrong refinement strategy, i.e., by keeping the size of the near-wall cell fixed when τw is calculated from its definition and by refining the near-wall cell when τw is determined from wall functions. The selected test case is the flow over a flat plate at Reynolds numbers of 107 and 109. The results show that using the wrong grid refinement strategy can lead to misleading results that exhibit reasonable orders of grid convergence.

References

1.
Roache
,
P.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Pub
, Socorro, NM.
2.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
3.
ASME,
2022
,
V&V1, Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation
,
American Society of Mechanical Engineers
, New York.
4.
ASME,
2009
,
V&V 20, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
. New York.
5.
Eça
,
L.
,
Vaz
,
G.
,
Toxopeus
,
S.
, and
Hoekstra
,
M.
,
2019
, “
Numerical Errors in Unsteady Flow Simulations
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
4
(
2
), p. 021001.10.1115/1.4043975
6.
Launder
,
B.
,
1984
, “
Numerical Computation of Convective Heat Transfer in Complex Turbulent Flows: Time to Abandon Wall Functions?
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1485
1491
.10.1016/0017-9310(84)90261-8
7.
Eça
,
L.
,
Pereira
,
F.
, and
Vaz
,
G.
,
2018
, “
Viscous Flow Simulations at High Reynolds Numbers Without Wall Functions: Is y+1 Enough for the Near-Wall Cells?
,”
Comput. Fluids
,
170
, pp.
157
175
.10.1016/j.compfluid.2018.04.035
8.
Bradshaw
,
P.
, and
Huang
,
G. P.
,
1995
, “
The Law of the Wall in Turbulent Flow
,”
Math. Phys. Sci.
,
451
(
1941
), pp.
165
188
.10.1098/rspa.1995.0122
9.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
10.
Celik
,
I.
,
Karaismail
,
E.
, and
Parsons
,
D.
,
2007
, “
A Reliable Error Estimation Technique for CFD Applications
,”
Computational Uncertainty in Military Vehicle Design
, Vol.
32
, pp.
1
20
, No. RTO-MP-AVT-147.
11.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.10.1115/1.4001771
12.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
13.
Rider
,
W.
,
Witkowski
,
W.
,
Kamm
,
J. R.
, and
Wildey
,
T.
,
2016
, “
Robust Verification Analysis
,”
J. Comput. Phys.
,
307
, pp.
146
163
.10.1016/j.jcp.2015.11.054
14.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2016
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
J. Verification, Validation Uncertainty Quantif.
,
1
(
4
), p.
041006
.10.1115/1.4035666
15.
Menter
,
F. R.
,
Kuntz
,
M.
,
Langtry
,
R.
,
Nagano
,
Y.
,
Tummers
,
M. J.
, and
Hanjalic
,
K.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
fourth Internal Symposium, Turbulence, Heat and Mass Transfer
, Antalya, Turkey, Oct. 12–17, pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
16.
Menter
,
F.
,
Egorov
,
Y.
, and
Rusch
,
D.
,
2006
, “
Steady and Unsteady Flow Modelling Using the kkl Model
,”
5th Internal Symposium, Turbulence, Heat and Mass Transfer
,
Dubrovnik, Croatia, Sept. 25–29
, pp.
403
406
.10.1615/ICHMT.2006.TurbulHeatMassTransf.800
17.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Prediction
,”
16th Brazilian Congress of Mechanical Engineering
, Uberlândia, MG, Brasil, Nov. 26–30, pp.
1
11
.
18.
Banks
,
J. W.
, and
Aslam
,
T. D.
,
2013
, “
Richardson Extrapolation for Linearly Degenerate Discontinuities
,”
J. Sci. Comput.
,
57
(
1
), pp.
1
18
.10.1007/s10915-013-9693-0
19.
Eça
,
L.
,
Toxopeus
,
S.
, and
Kerkvliet
,
M.
,
2023
, “
Procedures for the Estimation of Numerical Uncertainties in the Simulation of Steady and Unsteady Flows
,” IST, Report No. M-8.
20.
Bradshaw
,
P.
,
Ferriss
,
D. H.
, and
Atwell
,
N. P.
,
1967
, “
Calculation of Boundary-Layer Development Using the Turbulent Energy Equation
,”
J. Fluid Mech.
,
28
(
3
), pp.
593
616
.10.1017/S0022112067002319
21.
Eça
,
L.
, and
Hoekstra
,
M.
,
2008
, “
The Numerical Friction Line
,”
J. Mar. Sci. Technol.
,
13
(
4
), pp.
328
345
.10.1007/s00773-008-0018-1
22.
Eça
,
L.
, and
Hoekstra
,
M.
,
2010
, “
Near-Wall Profiles of Mean Flow and Turbulence Quantities Predicted by Eddy-Viscosity Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
63
(
8
), pp.
953
988
.10.1002/fld.2115
23.
Eça
,
L.
,
Starke
,
A.
,
Kerkvliet
,
M.
, and
Raven
,
H.
,
2022
, “
On the Contribution of Roughness Effects to the Scaling of Ship Resistance
,”
J. Ocean Eng. Mar. Energy
,
8
(
4
), pp.
539
551
.10.1007/s40722-022-00264-9
24.
Eça
,
L.
, and
Hoekstra
,
M.
,
2004
, “
On the Grid Sensitivity of the Wall Boundary Condition of the kω Turbulence Model
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
900
910
.10.1115/1.1845492
25.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
, La Cafiada, CA.https://cfd.spbstu.ru/agarbaruk/doc/2006_Wilcox_Turbulence-modeling-for-CFD.pdf
26.
Eça
,
L.
,
Hoekstra
,
M.
, and
Windt
,
J.
,
2002
, “
Practical Grid Generation Tools With Applications to Ship Hydrodynamics
,”
8th International Conference on Numerical Grid Generation in Computational Field Simulations
, Honolulu, Hawaii, June 3–6.
27.
Vinokur
,
M.
,
1983
, “
On One-Dimensional Stretching Functions for Finite Difference Calculations
,”
J. Comput. Phys.
,
50
(
2
), pp.
215
234
.10.1016/0021-9991(83)90065-7
28.
Klaij
,
C. M.
, and
Vuik
,
C.
,
2013
, “
Simple-Type Preconditioners for Cell-Centered, Collocated Finite Volume Discretization of Incompressible Reynolds-Averaged Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
71
(
7
), pp.
830
849
.10.1002/fld.3686
29.
Miller
,
T.
, and
Schmidt
,
F. W.
,
1988
, “
Use of a Pressure-Weighted Interpolation Method for the Solution of the Incompressible Navier-Stokes Equations on a Nonstaggered Grid System
,”
Numer. Heat Transfer
,
14
(
2
), pp.
213
233
.10.1080/10407788808913641
30.
van der Ploeg
,
A.
,
2019
, “
Anderson-Accelerated Convergence for Incompressible Navier-Stokes Equations
,”
22nd Numerical Towing Tank Symposium (NuTTS 2019), Tomar, Portugal, Sept. 29–Oct. 1
.
31.
Eça
,
L.
,
Klaij
,
C.
,
Vaz
,
G.
,
Hoekstra
,
M.
, and
Pereira
,
F.
,
2016
, “
On Code Verification of RANS Solvers
,”
J. Comput. Phys.
,
310
, pp.
418
439
.10.1016/j.jcp.2016.01.002
32.
Eça, L., Kerkvliet, M., and Toxopeus, S.,
2023
, “
Attaining the Asymptotic Range in RANS Simulations
,”
ASME
Paper No. VVUQ2023-108745.10.1115/VVUQ2023-108745
You do not currently have access to this content.