Abstract

Multifidelity (MF) models abound in simulation-based engineering. Many MF strategies have been proposed to improve the efficiency in engineering processes, especially in design optimization. When it comes to assessing the performance of MF optimization techniques, existing practice usually relies on test cases involving contrived MF models of seemingly random math functions, due to limited access to real-world MF models. While it is acceptable to use contrived MF models, these models are often manually written up rather than created in a systematic manner. This gives rise to the potential pitfall that the test MF models may be not representative of general scenarios. We propose a framework to generate test MF models systematically and characterize MF optimization techniques' performances comprehensively. In our framework, the MF models are generated based on given high-fidelity (HF) models and come with two parameters to control their fidelity levels and allow model randomization. In our testing process, MF case problems are systematically formulated using our model creation method. Running the given MF optimization technique on these problems produces what we call “savings curves” that characterize the technique's performance similarly to how receiver operating characteristic (ROC) curves characterize machine learning classifiers. Our test results also allow plotting “optimality curves” that serve similar functionality to savings curves in certain types of problems. The flexibility of our MF model creation facilitates the development of testing processes for general MF problem scenarios, and our framework can be easily extended to other MF applications than optimization.

References

1.
Bonfiglio
,
L.
,
Perdikaris
,
P.
,
Brizzolara
,
S.
, and
Karniadakis
,
G. E.
,
2018
, “
Multi-Fidelity Optimization of Super-Cavitating Hydrofoils
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
63
85
.10.1016/j.cma.2017.12.009
2.
Ramos-García
,
N.
,
Abraham
,
A.
,
Leweke
,
T.
, and
Sørensen
,
J. N.
,
2023
, “
Multi-Fidelity Vortex Simulations of Rotor Flows: Validation Against Detailed Wake Measurements
,”
Comput. Fluids
,
255
, p.
105790
.10.1016/j.compfluid.2023.105790
3.
Thelen
,
A. S.
,
Bryson
,
D. E.
,
Stanford
,
B. K.
, and
Beran
,
P. S.
,
2022
, “
Multi-Fidelity Gradient-Based Optimization for High-Dimensional Aeroelastic Configurations
,”
Algorithms
,
15
(
4
), p.
131
.10.3390/a15040131
4.
Ghoreishi
,
S. F.
, and
Allaire
,
D. L.
,
2018
, “
Gaussian Process Regression for Bayesian Fusion of Multi-Fidelity Information Sources
,”
AIAA
Paper No. 2018-4176.10.2514/6.2018-4176
5.
Abraham
,
T.
,
Hunsaker
,
D. F.
, and
Lazzara
,
D. S.
,
2023
, “
Multi-Fidelity Comparison of Supersonic Wave Drag Prediction Methods Using Axisymmetric Bodies
,”
AIAA
Paper No. 2023-1899.10.2514/6.2023-1899
6.
Zheng
,
L.
,
Hedrick
,
T. L.
, and
Mittal
,
R.
,
2013
, “
A Multi-Fidelity Modelling Approach for Evaluation and Optimization of Wing Stroke Aerodynamics in Flapping Flight
,”
J. Fluid Mech.
,
721
, pp.
118
154
.10.1017/jfm.2013.46
7.
Réthoré
,
P. E.
,
Fuglsang
,
P.
,
Larsen
,
G. C.
,
Buhl
,
T.
,
Larsen
,
T. J.
, and
Madsen
,
H. A.
,
2014
, “
TOPFARM: Multi‐Fidelity Optimization of Wind Farms
,”
Wind Energy
,
17
(
12
), pp.
1797
1816
.10.1002/we.1667
8.
Conti
,
P.
,
Guo
,
M.
,
Manzoni
,
A.
, and
Hesthaven
,
J. S.
,
2023
, “
Multi-Fidelity Surrogate Modeling Using Long Short-Term Memory Networks
,”
Comput. Methods Appl. Mech. Eng.
,
404
, p.
115811
.10.1016/j.cma.2022.115811
9.
Tao
,
J.
, and
Sun
,
G.
,
2019
, “
Application of Deep Learning Based Multi-Fidelity Surrogate Model to Robust Aerodynamic Design Optimization
,”
Aerosp. Sci. Technol.
,
92
, pp.
722
737
.10.1016/j.ast.2019.07.002
10.
Balabanov
,
V.
, and
Venter
,
G.
,
2004
, “
Multi-Fidelity Optimization With High-Fidelity Analysis and Low-Fidelity Gradients
,”
AIAA
Paper No. 2004-4459.10.2514/6.2004-4459
11.
Allaire
,
D.
,
Willcox
,
K.
, and
Toupet
,
O.
,
2010
, “
A Bayesian-Based Approach to Multifidelity Multidisciplinary Design Optimization
,”
AIAA
Paper No. 2010-9183.10.2514/6.2010-9183
12.
Li
,
S.
,
Xing
,
W.
,
Kirby
,
R.
, and
Zhe
,
S.
,
2020
, “
Multi-Fidelity Bayesian Optimization Via Deep Neural Networks
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
8521
8531
.
13.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.10.1098/rspa.2007.1900
14.
Couperthwaite
,
R.
,
Khatamsaz
,
D.
,
Molkeri
,
A.
,
James
,
J.
,
Srivastava
,
A.
,
Allaire
,
D.
, and
Arróyave
,
R.
,
2021
, “
The BAREFOOT Optimization Framework
,”
Integr. Mater. Manuf. Innovation
,
10
(
4
), pp.
644
660
.10.1007/s40192-021-00235-2
15.
Bandler
,
J. W.
,
Cheng
,
Q. S.
,
Dakroury
,
S. A.
,
Mohamed
,
A. S.
,
Bakr
,
M. H.
,
Madsen
,
K.
, and
Sondergaard
,
J.
,
2004
, “
Space Mapping: The State of the Art
,”
IEEE Trans. Microwave Theory Tech.
,
52
(
1
), pp.
337
361
.10.1109/TMTT.2003.820904
16.
Xu
,
S.
,
Zhang
,
S.
,
Huang
,
S.
,
Chen
,
S. H.
,
Lee
,
S. H.
, and
Celik
,
S.
,
2014
, “
Efficient Multi-Fidelity Simulation Optimization
,”
Proceedings of the Winter Simulation Conference 2014
, Savannah, GA, Dec. 7–10,
pp.
3940
3951
.10.1109/WSC.2014.7020219
17.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
18.
Lam
,
R.
,
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2015
, “
Multifidelity Optimization Using Statistical Surrogate Modeling for Non-Hierarchical Information Sources
,”
AIAA
Paper No. 2015-0143.10.2514/6.2015-0143
19.
Kandasamy
,
K.
,
Dasarathy
,
G.
,
Oliva
,
J.
,
Schneider
,
J.
, and
Poczos
,
B.
,
2019
, “
Multi-Fidelity Gaussian Process Bandit Optimization
,”
J. Artif. Intell. Res.
,
66
, pp.
151
196
.10.1613/jair.1.11288
20.
Toal
,
D. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscip. Optim.
,
51
(
6
), pp.
1223
1245
.10.1007/s00158-014-1209-5
21.
Zhang
,
Y.
,
Han
,
Z. H.
, and
Zhang
,
K. S.
,
2018
, “
Variable-Fidelity Expected Improvement Method for Efficient Global Optimization of Expensive Functions
,”
Struct. Multidiscip. Optim.
,
58
(
4
), pp.
1431
1451
.10.1007/s00158-018-1971-x
22.
Takeno
,
S.
,
Fukuoka
,
H.
,
Tsukada
,
Y.
,
Koyama
,
T.
,
Shiga
,
M.
,
Takeuchi
,
I.
, and
Karasuyama
,
M.
,
2020
, “
Multi-Fidelity Bayesian Optimization With Max-Value Entropy Search and Its Parallelization
,”
International Conference on Machine Learning
,
Virtual Event, July 13–18
, pp.
9334
9345
.https://proceedings.mlr.press/v119/takeno20a/takeno20a.pdf
23.
Song
,
J.
,
Chen
,
Y.
, and
Yue
,
Y.
,
2019
, “
A General Framework for Multi-Fidelity Bayesian Optimization With Gaussian Processes
,”
The 22nd International Conference on Artificial Intelligence and Statistics
, Naha, Okinawa, Japan, Apr. 16–18
, pp.
3158
3167
.https://proceedings.mlr.press/v89/song19b/song19b.pdf
24.
Bryson
,
D. E.
, and
Rumpfkeil
,
M. P.
,
2018
, “
Multifidelity Quasi-Newton Method for Design Optimization
,”
AIAA J.
,
56
(
10
), pp.
4074
4086
.10.2514/1.J056840
25.
Nocedal
,
J.
, and
Wright
,
S. J.
, eds.,
2006
,
Numerical Optimization
,
Springer New York
,
New York
.
26.
Wu
,
N.
,
Mader
,
C. A.
, and
Martins
,
J. R.
,
2022
, “
A Gradient-Based Sequential Multifidelity Approach to Multidisciplinary Design Optimization
,”
Struct. Multidiscip. Optim.
,
65
(
4
), p.
131
.10.1007/s00158-022-03204-1
27.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
2
, No.
3
,
MIT Press
,
Cambridge, MA
, p.
4
.
28.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recognit. Lett.
,
27
(
8
), pp.
861
874
.10.1016/j.patrec.2005.10.010
29.
Sandgren
,
E.
,
1977
, “
The Utility of Nonlinear Programming Algorithms
,”
Ph.D. thesis
,
Purdue University
, West Lafayette, IN.https://www.proquest.com/openview/0b729fc0fed7bb7878f3a77871af9224/1?pqorigsite=gscholar&cbl=18750&diss=y
30.
Seepersad
,
C. C.
,
Pedersen
,
K.
,
Emblemsvåg
,
J.
,
Bailey
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2006
, “
The Validation Square: How Does One Verify and Validate a Design Method
,” Decision Making in Engineering Design, ASME Press, New York, pp.
303
314
.10.1115/1.802469.ch25
31.
Pedersen
,
K.
,
Emblemsvåg
,
J.
,
Bailey
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2000
, “
Validating Design Methods and Research: The Validation Square
,”
ASME
Paper No. DETC200010.1115/DETC2000/DTM-14579.
32.
Bratley
,
P.
, and
Fox
,
B. L.
,
1988
, “
Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator
,”
ACM Trans. Math. Software (TOMS)
,
14
(
1
), pp.
88
100
.10.1145/42288.214372
33.
Tao
,
S.
,
Van Beek
,
A.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2021
, “
Multi-Model Bayesian Optimization for Simulation-Based Design
,”
ASME J. Mech. Des.
,
143
(
11
), p.
111701
.10.1115/1.4050738
34.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
35.
Belakaria
,
S.
,
Deshwal
,
A.
, and
Doppa
,
J. R.
,
2020
, “
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach
,”
Proceedings of the AAAI Conference on Artificial Intelligence
, New York, Feb. 7–12, pp.
10035
10043
.10.1609/aaai.v34i06.6560
You do not currently have access to this content.