Abstract

Variability in multiple independent input parameters makes it difficult to estimate the resultant variability in a system's overall response. The propagation of errors (PE) and Monte Carlo (MC) techniques are two major methods to predict the variability of a system. However, the formalism of PE can lead to an inaccurate estimate for systems that have parameters varying over a wide range. For the latter, the results give a direct estimate of the variance of the response, but for complex systems with many parameters, the number of trials necessary to yield an accurate estimate can be sizeable to the point the technique becomes impractical. The effectiveness of a designed experiment (orthogonal array) methodology, as employed in Taguchi tolerance design (TD) method to estimate variability in complex systems is studied. We use a linear elastic three-point bending beam model and a nonlinear extended finite elements crack growth model to test and compare the PE and MC methods with the TD method. Our focus is on assessing their effectiveness under those specific circumstances. Results from an MC estimate, using 10,000 trials, serve as a referent to evaluate the result in both cases. We find that the PE method works suboptimal for a coefficient of variation above 5% in the input variables. In addition, we find that the TD method works very well with moderately sized trials of designed experiments for both models. Our results demonstrate how the variability estimation methods perform in the deterministic domain of numerical simulations and can assist in designing physical tests by providing a guideline performance measure.

References

1.
Arthanari
,
T. S.
,
2003
, “
Chapter 23. Tolerancing—Approaches and Related Issues in Industry
,”
Handbook of Statistics
, Vol.
22
,
Elsevier
, Amsterdam, The Netherlands, pp.
823
865
.
2.
Kleiber
,
M.
,
1992
,
The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation/Michael Kleiber, Tran Duong Hien
,
Wiley
,
Chichester, UK
.
3.
Pflugfelder
,
D.
,
Wilkens
,
J. J.
, and
Oelfke
,
U.
,
2008
, “
Worst Case Optimization: A Method to Account for Uncertainties in the Optimization of Intensity Modulated Proton Therapy
,”
Phys. Med. Biol.
,
53
(
6
), pp.
1689
1700
.10.1088/0031-9155/53/6/013
4.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
5.
Huet
,
S.
,
Bouvier
,
A.
,
Poursat
,
M.-A.
, and
Jolivet
,
E.
,
2004
,
Statistical Tools for Nonlinear Regression
,
Springer-Verlag
,
New York
.
6.
Ku
,
H. H.
,
1966
, “
Notes on the Use of Propagation of Error Formulas
,”
Natl. Bureau Standards
,
70C
(
4
), p.
263
.10.6028/jres.070C.025
7.
Mount
,
N.
, and
Louis
,
J.
,
2005
, “
Estimation and Propagation of Error in Measurements of River Channel Movement From Aerial Imagery
,”
Wiley InterScience
,
30
(
5
), pp.
635
643
.10.1002/esp.1172
8.
Oksanen
,
J.
, and
Sarjakoski
,
T.
,
2005
, “
Error Propagation of DEM-Based Surface Derivatives
,”
Comput. Geosci.
,
31
(
8
), pp.
1015
1027
.10.1016/j.cageo.2005.02.014
9.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput.-Aided Des.
,
27
(
1
), pp.
6
15
.10.1016/0010-4485(95)90748-5
10.
Beck
,
A. T.
, and
da Silva
,
C. R. A.
,
2011
, “
Timoshenko Versus Euler Beam Theory: Pitfalls of a Deterministic Approach
,”
Struct. Saf.
,
33
(
1
), pp.
19
25
.10.1016/j.strusafe.2010.04.006
11.
Phadke
,
M. S.
,
Quality Engineering Using Robust Design
,
Prentice Hall
,
Englewood Cliffs, NJ
.
12.
D'Errico
,
J. R.
, and
Zaino
,
N. A.
,
1988
, “
Statistical Tolerancing Using a Modification of Taguchi's Method
,”
Technometrics
,
30
(
4
), pp.
397
405
.10.1080/00401706.1988.10488434
13.
Taguchi
,
G.
,
Chowdhury
,
S.
, and
Wu
,
Y.
,
2004
, “
Tolerance Design
,”
Taguchi's Quality Engineering Handbook
,
Wiley
, Hoboken, NJ, pp.
340
351
.
14.
Laz
,
P. J.
,
Pal
,
S.
,
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2006
, “
Probabilistic Finite Element Prediction of Knee Wear Simulator Mechanics
,”
J. Biomech.
,
39
(
12
), pp.
2303
2310
.10.1016/j.jbiomech.2005.07.029
15.
Bisgaard
,
S.
,
1997
, “
Designing Experiments for Tolerancing Assembled Products
,”
Technometrics
,
39
(
2
), pp.
142
152
.10.1080/00401706.1997.10485079
16.
Harding
,
B.
,
Tremblay
,
C.
, and
Cousineau
,
D.
,
2014
, “
Standard Errors: A Review and Evaluation of Standard Error Estimators Using Monte Carlo Simulations
,”
Quant. Methods Psychol.
,
10
(
2
), pp.
107
123
.10.20982/tqmp.10.2.p107
17.
Funkenbusch
,
P. D.
,
2004
,
Practical Guide to Designed Experiments: A Unified Modular Approach
,
CRC Press
,
Boca Raton, FL
.
18.
Gere
,
J. M.
, and
Goodno
,
B. J.
,
2009
,
Mechanics of Materials
,
Cengage Learning
,
Stamford, CT
.
You do not currently have access to this content.