Abstract

The Benchmark Validation Experiment for Reynolds-averaged Navier–Stokes (RANS)/large eddy simulation (LES) Investigations (BeVERLI) aims to produce an experimental dataset of three-dimensional non-equilibrium turbulent boundary layers with various levels of separation that, for the first time, meets the most exacting requirements of computational fluid dynamics validation. The application of simulations and modeling in high-consequence engineering environments has become increasingly prominent in the past two decades, considerably raising the standards and demands of model validation and forcing a significant paradigm shift in the design of corresponding validation experiments. In this paper, based on the experiences of project BeVERLI, we present strategies for designing and executing validation experiments, hoping to ease the transition into this new era of fluid dynamics experimentation and help upcoming validation experiments succeed. We discuss the selection of a flow for validation, the synergistic use of simulations and experiments, cross-institutional collaborations, and tools, such as model scans, time-dependent measurements, and repeated and redundant measurements. The proposed strategies are shown to successfully mitigate risks and enable the methodical identification, measurement, uncertainty quantification, and characterization of critical flow features, boundary conditions, and corresponding sensitivities, promoting the highest levels of model validation experiment completeness per Oberkampf and Smith [1]. Furthermore, the applicability of these strategies to estimating critical and difficult-to-obtain bias error uncertainties of different measurement systems, e.g., the underprediction of high-order statistical moments from particle image velocimetry velocity field data due to spatial filtering effects, and to systematically assessing the quality of uncertainty estimates is shown.

References

1.
Oberkampf
,
W. L.
, and
Smith
,
B. L.
,
2017
, “
Assessment Criteria for Computational Fluid Dynamics Model Validation Experiments
,”
J. Verif., Validation Uncertainty Quantif.
,
2
(
3
), p.
031002
.10.1115/1.4037887
2.
Spalart
,
P. R.
,
2015
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
, pp.
1
15
.10.1016/j.paerosci.2014.12.004
3.
Lozano-Durán
,
A.
,
Bose
,
S. T.
, and
Moin
,
P.
,
2022
, “
Performance of Wall-Modeled LES With Boundary-Layer-Conforming Grids for External Aerodynamics
,”
AIAA J.
,
60
(
2
), pp.
747
766
.10.2514/1.J061041
4.
Cho
,
M.
,
Lozano-Durán
,
A.
,
Moin
,
P.
, and
Park
,
G. I.
,
2021
, “
Wall-Modeled Large-Eddy Simulation of Turbulent Boundary Layers With Mean-Flow Three-Dimensionality
,”
AIAA J.
,
59
(
5
), pp.
1707
1717
.10.2514/1.J059861
5.
Bose
,
S. T.
, and
Park
,
G. I.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
535
561
.10.1146/annurev-fluid-122316-045241
6.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries Inc
.,
La Cañada, CA
.
7.
Bolds-Moorehead
,
P.
, and
Shikany
,
D.
,
2018
, “
Aircraft Certification by Simulation
,”
Boeing, Presentation for the Royal Aeronautical Society Flight Simulation Conference
, accessed Mar. 10, https://www.aerosociety.com/media/8864/15-cert-by-analysis.pdf
8.
Duraisamy
,
K.
,
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2017
, “
Status, Emerging Ideas and Future Directions of Turbulence Modeling Research in Aeronautics
,” NASA, Report No.
NASA/TM-2017-219682
.https://ntrs.nasa.gov/citations/20170011477
9.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511760396
10.
Aeschliman
,
D. P.
, and
Oberkampf
,
W. L.
,
1998
, “
Experimental Methodology for Computational Fluid Dynamics Code Validation
,”
AIAA J.
,
36
(
5
), pp.
733
741
.10.2514/2.461
11.
Rumsey
,
C. L.
,
2018
, “
The NASA Juncture Flow Test as a Model for Effective CFD/Experimental Collaboration
,”
AIAA Aviation and Aeronautics 2018 Forum and Exposition
,
American Institute of Aeronautics and Astronautics
,
Atlanta, GA
, June 25–29, pp.
1
10
.10.2514/6.2018-3319
12.
Rumsey
,
C. L.
,
Ahmad
,
N. N.
,
Carlson
,
J.-R.
,
Kegerise
,
M. A.
,
Neuhart
,
D. H.
,
Hannon
,
J. A.
, and
Jenkins
,
L. N.
,
2022
, “
NASA Juncture Flow Computational Fluid Dynamics Validation Experiment
,”
AIAA J.
,
60
(
8
), pp.
4789
4806
.10.2514/1.J061600
13.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C.-S.
,
Harris
,
J.
,
Schaeffler
,
N. W.
, and
Washburn
,
A. E.
,
2006
, “
Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction
,”
AIAA J.
,
44
(
12
), pp.
2820
2830
.10.2514/1.13817
14.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C.-S.
, and
Harris
,
J.
,
2006
, “
Experimental Investigation of Separation Control Part 2: Zero Mass-Flux Oscillatory Blowing
,”
AIAA J.
,
44
(
12
), pp.
2831
2845
.10.2514/1.19324
15.
Lynch
,
K. P.
,
Barone
,
M. F.
,
Beresh
,
S. J.
,
Spillers
,
R.
,
Henfling
,
J.
, and
Soehnel
,
M.
,
2019
, “
Revisiting Bachalo-Johnson: The Sandia Axisymmetric Transonic Hump and CFD Challenge
,”
AIAA Aviation 2019 Forum
,
American Institute of Aeronautics and Astronautics
,
Dallas, TX
, Jun. 17–21, pp. 1–13.10.2514/6.2019-2848
16.
Byun
,
G.
,
Simpson
,
R. L.
, and
Long
,
C. H.
,
2004
, “
Study of Vortical Separation From Three-Dimensional Symmetric Bumps
,”
AIAA J.
,
42
(
4
), pp.
754
765
.10.2514/1.1829
17.
Byun
,
G.
, and
Simpson
,
R. L.
,
2006
, “
Structure of Three-Dimensional Separated Flow on an Axisymmetric Bump
,”
AIAA J.
,
44
(
5
), pp.
999
1008
.10.2514/1.17002
18.
Williams
,
O.
,
Samuell
,
M.
,
Sarwas
,
E. S.
,
Robbins
,
M.
, and
Ferrante
,
A.
,
2020
, “
Experimental Study of a CFD Validation Test Case for Turbulent Separated Flows
,”
AIAA Scitech 2020 Forum
,
American Institute of Aeronautics and Astronautics
,
Orlando, FL
, Jan. 6–10, pp.
1
18
.10.2514/6.2020-0092
19.
Robbins
,
M. L.
,
Samuell
,
M.
,
Annamalai
,
H.
, and
Williams
,
O. J.
,
2021
, “
Overview of Validation Completeness for Gaussian Speed-Bump Separated Flow Experiments
,”
AIAA Scitech 2021 Forum
,
American Institute of Aeronautics and Astronautics, Virtual Event
,
Dallas, TX
, Jan. 11–15 and 19–21, pp.
1
23
.10.2514/6.2021-0969
20.
Simmons
,
D.
,
Thomas
,
F. O.
, and
Corke
,
T. C.
,
2019
, “
Smooth Body Flow Separation Experiments and Their Surface Flow Topology Characterization
,”
AIAA Aviation 2019 Forum
,
American Institute of Aeronautics and Astronautics
,
Dallas, TX
, Jun. 17–21, pp.
1
22
.10.2514/6.2019-3085
21.
Duetsch-Patel
,
J. E.
,
MacGregor
,
D.
,
Jenssen
,
Y. L.
,
Henry
,
P.-Y.
,
Muthanna
,
C.
,
Savio
,
L.
,
Lavoie
,
P.
, et al.,
2022
, “
The BeVERLI Hill Three-Dimensional Separating Flow Case: Cross-Facility Comparisons of Validation Experiment Results
,”
AIAA Scitech 2022 Forum
,
American Institute of Aeronautics and Astronautics
,
San Diego, CA
, Jan. 3–7, pp. 1–22.10.2514/6.2022-0698
22.
Gargiulo
,
A.
,
Ozoroski
,
T. A.
,
Hallock
,
T.
,
Haghiri
,
A.
,
Sandberg
,
R. D.
,
Visonneau
,
M.
,
Deng
,
G.
, et al.,
2022
, “
Computations of the BeVERLI Hill Three-Dimensional Separating Flow Model Validation Cases
,”
AIAA Scitech 2022 Forum
,
American Institute of Aeronautics and Astronautics
,
San Diego, CA
, Jan. 3–7, pp.
1
33
.10.2514/6.2022-1034
23.
Levy
,
D.
,
Laflin
,
K.
,
Vassberg
,
J.
,
Tinoco
,
E.
,
Mani
,
M.
,
Rider
,
B.
, and
Brodersen
,
O.
,
2013
, “
Summary of Data From the Fifth AIAA CFD Drag Prediction Workshop
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
American Institute of Aeronautics and Astronautics
,
Grapevine, TX
, Jan. 7–10, pp.
1
31
.10.2514/6.2013-46
24.
Rumsey
,
C. L.
,
Slotnick
,
J. P.
,
Long
,
M.
,
Stuever
,
R. A.
, and
Wayman
,
T. R.
,
2011
, “
Summary of the First AIAA CFD High-Lift Prediction Workshop
,”
J. Aircr.
,
48
(
6
), pp.
2068
2079
.10.2514/1.C031447
25.
Schuster
,
D. M.
,
2011
, “
The Expanding Role of Applications in the Development and Validation of CFD at NASA
,”
Computational Fluid Dynamics 2010: Proceedings of the Sixth International Conference on Computational Fluid Dynamics
, ICCFD6, St. Petersburg, Russia, July 12–16, 2010,
A.
Kuzmin
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
3
29.
10.1007/978-3-642-17884-9_1
26.
Fremeaux
,
C. M.
, and
Hall
,
R. M.
,
2004
, “
COMSAC: Computational Methods for Stability and Control
,”
NASA Symposium
,
NASA
,
Hampton, VA
, Sep. 23–25, 2003, pp.
1
15
.https://ntrs.nasa.gov/citations/20040086515
27.
Ahmed
,
S.
,
Ramm
,
G.
, and
Faltin
,
G.
,
1984
, “
Some Salient Features of the Time-Averaged Ground Vehicle Wake
,”
SAE International Congress and Exposition
, Detroit, MI, Feb. 27–Mar. 2, pp.
1
31.
10.4271/840300
28.
Grandemange
,
M.
,
Cadot
,
O.
, and
Gohlke
,
M.
,
2012
, “
Reflectional Symmetry Breaking of the Separated Flow Over Three-Dimensional Bluff Bodies
,”
Phys. Rev. E
,
86
(
3
), p.
035302
.10.1103/PhysRevE.86.035302
29.
Evstafyeva
,
O.
,
Morgans
,
A. S.
, and
Dalla Longa
,
L.
,
2017
, “
Simulation and Feedback Control of the Ahmed Body Flow Exhibiting Symmetry Breaking Behaviour
,”
J. Fluid Mech.
,
817
, p.
R2
.10.1017/jfm.2017.118
30.
He
,
K.
,
Minelli
,
G.
,
Wang
,
J.
,
Dong
,
T.
,
Gao
,
G.
, and
Krajnović
,
S.
,
2021
, “
Numerical Investigation of the Wake Bi-Stability Behind a Notchback Ahmed Body
,”
J. Fluid Mech.
,
926
, p.
A36
.10.1017/jfm.2021.748
31.
Gargiulo
,
A.
,
Beardsley
,
C.
,
Vishwanathan
,
V.
,
Fritsch
,
D. J.
,
Duetsch-Patel
,
J. E.
,
Szoke
,
M.
,
Borgoltz
,
A.
, et al.,
2020
, “
Examination of Flow Sensitivities in Turbulence Model Validation Experiments
,”
AIAA Scitech 2020 Forum
,
American Institute of Aeronautics and Astronautics
,
Orlando, FL
, Jan. 6–10, pp.
1
23
.10.2514/6.2020-1583
32.
Duetsch-Patel
,
J. E.
,
Vishwanathan
,
V.
,
Minionis
,
J. B.
,
Totten
,
E.
,
Gargiulo
,
A.
,
Fritsch
,
D. J.
, and
Szoke
,
M.
,
2020
, “
Aerodynamic Design and Assessment of Modular Test Section Walls for CFD Validation in Hybrid Anechoic Wind Tunnels
,”
AIAA Scitech 2020 Forum
,
American Institute of Aeronautics and Astronautics
,
Orlando, FL
, Jan. 6–10, pp.
1
12.
10.2514/6.2020-2214
33.
Vishwanathan
,
V.
,
Szoke
,
M.
,
Duetsch-Patel
,
J. E.
,
Gargiulo
,
A.
,
Fritsch
,
D. J.
,
Borgoltz
,
A.
,
Roy
,
C. J.
, et al.,
2020
, “
Aerodynamic Design and Validation of a Contraction Profile for Flow Field Improvement and Uncertainty Quantification in a Subsonic Wind Tunnel
,”
AIAA Scitech 2020 Forum
,
American Institute of Aeronautics and Astronautics
,
Orlando, FL
, Jan. 6–10, pp.
1
17
.10.2514/6.2020-2211
34.
Duetsch-Patel
,
J. E.
,
Gargiulo
,
A.
,
Borgoltz
,
A.
,
Devenport
,
W. J.
, and
Lowe
,
K. T.
,
2023
, “
Structural Aspects of the Attached Turbulent Boundary Layer Flow Over a Hill
,”
Exp. Fluids
,
64
(
2
), pp.
1
38
.10.1007/s00348-023-03580-4
35.
Naughton
,
J.
,
Robinson
,
J.
, and
Durgesh
,
V.
,
2003
, “
Oil-Film Interferometry Measurement of Skin Friction - Analysis Summary and Description of Matlab Program
,”
20th International Congress on Instrumentation in Aerospace Simulation Facilities
,
IEEE
,
Gottingen, Germany
, Aug. 25–29, pp.
169
178
.10.1109/ICIASF.2003.1274866
36.
Liu
,
T.
,
Cattafesta
,
L. N.
,
Radeztsky
,
R. H.
, and
Burner
,
A. W.
,
2000
, “
Photogrammetry Applied to Wind-Tunnel Testing
,”
AIAA J.
,
38
(
6
), pp.
964
971
.10.2514/2.1079
37.
Sundarraj
,
V.
,
MacGregor
,
D.
,
Gargiulo
,
A.
,
Duetsch-Patel
,
J. E.
,
Ozoroski
,
T. A.
,
Hallock
,
T.
, and
Borgoltz
,
A.
,
2023
, “
Estimation of Skin Friction on the NASA BeVERLI Hill Using Oil Film Interferometry
,”
AIAA Scitech 2023 Forum
,
American Institute of Aeronautics and Astronautics
,
National Harbor, MD
, Jan 23–27, Paper No. AIAA 2023-0988.10.2514/6.2023-0988
38.
ANSYS
,
2021
, “
ANSYS Fluent Theory Guide, Release 2021 R2
,”
ANSYS
, Canonsburg, PA, accessed Mar. 15, 2023, https://www.ansys.com/
39.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
,
American Institute of Aeronautics and Astronautics
,
Reno, NV
, Jan. 9–12, pp.
1
12
.10.2514/6.1989-366
40.
Sutherland
,
W.
,
1893
, “
LII. The Viscosity of Gases and Molecular Force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
36
(
223
), pp.
507
531
.10.1080/14786449308620508
41.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aérosp.
,
1
, pp.
5
21
.https://turbmodels.larc.nasa.gov/Papers/RechAerosp_1994_SpalartAllmaras.pd
42.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
43.
Cadence Design Systems
,
2022
, “
Pointwise Manual
,”
Pointwise
, Forth Worth, TX, accessed Mar. 15, 2023, https://www.pointwise.com/doc/user-manual
44.
Althaf
,
A. M.
,
Bangaru
,
Y. S.
,
Fawcett
,
R.
,
Guled
,
V. M.
,
Maloo
,
T. G.
,
Gorgojo
,
P. N.
,
Sala
,
C. R.
, et al.,
2023
, “
Numerical Modeling and Tunnel Specific Considerations for CFD Model Development of Low-Speed Wind Tunnels
,”
AIAA Aviation 2023 Forum
,
San Diego, CA
, Jun. 12–16, p.
3980
.10.2514/6.2023-3980
45.
Beardsley
,
C. T.
,
Gargiulo
,
A.
,
Vishwanathan
,
V.
,
Fritsch
,
D.
,
Duetsch-Patel
,
J.
,
Borgoltz
,
A.
,
Lowe
,
K. T.
, et al.,
2020
, “
Computational Fluid Dynamic Analysis for the Assessment of Experimental Design Risks and Flow Sensitivities for a Three-Dimensional Bump Flow
,”
AIAA Aviation 2020 Forum
,
American Institute of Aeronautics and Astronautics
,
Virtual Event
, Jun. 15–19, pp.
1
30
.10.2514/6.2020-3062
46.
Rhode
,
M. N.
, and
Oberkampf
,
W. L.
,
2017
, “
Estimation of Uncertainties for a Model Validation Experiment in a Wind Tunnel
,”
J. Spacecr. Rockets
,
54
(
1
), pp.
155
168
. doi:10.2514/1. A33563.10.2514/1.A33563
47.
Gargiulo
,
A.
,
Duetsch-Patel
,
J. E.
,
Ozoroski
,
T. A.
,
Beardsley
,
C.
,
Vishwanathan
,
V.
,
Fritsch
,
D.
,
Borgoltz
,
A.
, et al.,
2021
, “
Flow Field Features of the BEVERLI Hill Model
,”
AIAA Scitech 2021 Forum
,
American Institute of Aeronautics and Astronautics
,
Virtual Event
, Jan. 11–15 and 19–21, pp.
1
22
.10.2514/6.2021-1741
48.
Benedict
,
L. H.
, and
Gould
,
R. D.
,
1996
, “
Towards Better Uncertainty Estimates for Turbulence Statistics
,”
Exp. Fluids
,
22
(
2
), pp.
129
136
.10.1007/s003480050030
49.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
50.
Lavoie
,
P.
,
Avallone
,
G.
,
De Gregorio
,
F.
,
Romano
,
G. P.
, and
Antonia
,
R. A.
,
2007
, “
Spatial Resolution of PIV for the Measurement of Turbulence
,”
Exp. Fluids
,
43
(
1
), pp.
39
51
.10.1007/s00348-007-0319-x
51.
Gatti
,
D.
,
Stroh
,
A.
,
Frohnapfel
,
B.
, and
Örlü
,
R.
,
2022
, “
Spatial Resolution Issues in Rough Wall Turbulence
,”
Exp. Fluids
,
63
(
3
), pp.
1
6
.10.1007/s00348-022-03412-x
52.
Smits
,
A. J.
,
Monty
,
J.
,
Hultmark
,
M.
,
Bailey
,
S. C. C.
,
Hutchins
,
N.
, and
Marusic
,
I.
,
2011
, “
Spatial Resolution Correction for Wall-Bounded Turbulence Measurements
,”
J. Fluid Mech.
,
676
, pp.
41
53
.10.1017/jfm.2011.19
53.
Lee
,
J. H.
,
Monty
,
J. P.
,
Hutchins
., and
N.
,
Kevin
,
2016
, “
Validating Under-Resolved Turbulence Intensities for PIV Experiments in Canonical Wall-Bounded Turbulence
,”
Exp. Fluids
,
57
(
8
), pp.
1
11
.10.1007/s00348-016-2209-6
54.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), pp.
1
17
.10.1115/1.4027353
You do not currently have access to this content.