Abstract

Determining whether a computational model is valid for its intended use requires the rigorous assessment of agreement between observed system responses of the computational model and the corresponding real world system or process of interest. In this article, a new method for assessing the validity of computational models is proposed based upon the probability of agreement (PoA) approach. The proposed method quantifies the probability that observed simulation and system response differences are small enough to be considered acceptable, and hence, the two systems can be used interchangeably. Rather than relying on Boolean-based statistical tests and procedures, the distance-based probability of agreement validation metric (PoAVM) assesses the similarity of system responses used to predict system behaviors by comparing the distributions of output behavior. The corresponding PoA plot serves as a useful tool for summarizing agreement transparently and directly while accounting for potentially complicated bias and variability structures. A general procedure for employing the proposed computational model validation method is provided which leverages bootstrapping to overcome the fact that in most situations where computational models are employed, one’s ability to collect real world data is limited. The new method is demonstrated and contextualized through an illustrative application based upon empirical data from a transient-phase assembly line manufacturing process and a discussion on its desirability based upon an established validation framework.

References

1.
Sargent
,
R. G.
,
2013
, “
Verification and Validation of Simulation Models
,”
J. Simul.
,
7
(
1
), pp.
12
24
.10.1057/jos.2012.20
2.
ASME
,
2009
, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, latest ed.,
ASME
Standard No. VV20-2009(R2021)
.https://www.asme.org/codes-standards/find-codesstandards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer
3.
ASME
,
2019
, Standard for Verification and Validation in Computational Solid Mechanics, latest ed.,
ASME
Standard No. VV10-2019.https://www.asme.org/codes-standards/find-codesstandards/v-v-10-guide-verification-validation-computational-solid-mechanics/2019/drm-enabledpdf
4.
ANS
,
2016
,
Verification and Validation of Non-Safety-Related Scientific and Engineering Computer Programs for the Nuclear Industry
, latest ed.,
The American Nuclear Society
,
LaGrange Park, IL
, Standard No. ANSI/ANS 10.4-2008 (R2016).
5.
IEEE
,
2012
,
Standard for System and Software Verification and Validation
, latest ed.,
The Institute of Electric and Electronics Engineers
,
IEEE
,
New York, NY
, Standard No. IEEE
1012
2012
.
6.
Banyay
,
G. A.
,
Worrell
,
C. L.
,
Sidener
,
S. E.
, and
Kaizer
,
J. S.
,
2021
, “
Credibility Assessment of Machine Learning in a Manufacturing Process Application
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
6
(
3
), p. 031007.10.1115/1.4051717
7.
Stevens
,
N. T.
,
Steiner
,
S. H.
, and
MacKay
,
R. J.
,
2017
, “
Assessing Agreement Between Two Measurement Systems: An Alternative to the Limits of Agreement Approach
,”
Stat. Methods Med. Res.
,
26
(
6
), pp.
2487
2504
.10.1177/0962280215601133
8.
Porter
,
N. W.
,
Maupin
,
K. A.
,
Swiler
,
L. P.
, and
Mousseau
,
V. A.
,
2021
, “
Validation Metrics for Fixed Effects and Mixed-Effects Calibration
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
6
(
1
), p. 011005.10.1115/1.4049534
9.
Fradeneck
,
A. D.
, and
Kimber
,
M. L.
,
2020
, “
Applicability of Common RANS Models for the Calculation of Transient Forced to Natural Convection
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
5
(
2
), p. 021003.10.1115/1.4047481
10.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
New York
11.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
12.
Oberkamp
,
W. L.
, and
Trucano
,
T. G.
,
2000
, “
Validation Methodology in Computational Fluid Dynamics
,”
Fluids 2000 Conference and Exhibit
, Denver, CO, June
19
22
.10.2514/6.2000-2549
13.
Lee
,
G.
,
Kim
,
W.
,
Oh
,
H.
,
Youn
,
B. D.
, and
Kim
,
N. H.
,
2019
, “
Review of Statistical Model Calibration and Validation—From the Perspective of Uncertainty Structures
,”
Struct. Multidiscip. Optim.
,
60
(
4
), pp.
1619
1644
.10.1007/s00158-019-02270-2
14.
Haimes
,
Y. Y.
,
2016
,
Risk Modeling, Assessment, and Management
,
Wiley
,
Hoboken, NJ
.
15.
Vose
,
D.
,
2008
,
Risk Analysis: A Quantitative Guide
.
Wiley
, Hoboken, NJ.
16.
Morgan
,
M. G.
,
Henrion
,
M.
, and
Small
,
M.
,
2007
,
Uncertainty: A Guide to Dealing With Uncertainty in Quantitative Risk and Policy Analysis
,
Cambridge University Press
, Cambridge, UK.
17.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
.10.1016/j.ress.2004.03.025
18.
Bodner
,
J.
, and
Kaul
,
V.
,
2022
, “
A Framework for in Silico Clinical Trials for Medical Devices Using Concepts From Model Verification, Validation, and Uncertainty Quantification
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
7
(
2
), p. 021001.10.1115/1.4053565
19.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
,
2004
, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
11
19
.10.1016/j.ress.2004.03.002
20.
ASME,
2012
, An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics, latest ed.,
ASME
Standard No. VV10.1-2012(R2022).https://www.asme.org/codes-standards/find-codesstandards/v-v-10-1-illustration-concepts-verification-validation-computational-solid-mechanics
21.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p. 071005.10.1115/1.4004223
22.
Sargent
,
R. G.
,
Goldsman
,
D. M.
, and
Yaacoub
,
T.
,
2015
, “
Use of the Interval Statistical Procedure for Simulation Model Validation
,” 2015 Winter Simulation Conference (
WSC
), Huntington Beach, CA, Dec.
6
9
.10.1109/WSC.2015.7408153
23.
Wackerly
,
D. D.
,
Mendenhall
,
W.
, and
Scheaffer
,
R. L.
,
2008
,
Mathematical Statistics With Applications
, Cengage Learning
, Boston, MA.
24.
Balci
,
O.
, and
Sargent
,
R. G.
,
1982
, “
Validation of Multivariate Response Models Using Hotelling’s Two-Sample t2 Test
,”
Simulation.
,
39
(
6
), pp.
185
192
.10.1177/003754978203900602
25.
Naylor
,
T. H.
, and
Finger
,
J. M.
,
1967
, “
Verification of Computer Simulation Models
,”
Manage. Sci.
,
14
(
2
), pp.
B-92
B-101
.10.1287/mnsc.14.2.B92
26.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2008
, “
Computational Methods for Model Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1197
1207
.10.1016/j.ress.2007.08.001
27.
Anderson
,
T. W.
,
1962
, “
On the Distribution of the Two-Sample Cramer-Von Mises Criterion
,”
Ann. Math. Stat.
,
33
(
3
), pp.
1148
1159
.10.1214/aoms/1177704477
28.
Law
,
A. M.
,
2007
,
Simulation Modeling and Analysis
, 4th ed.,
McGraw-Hill Education
, New York.
29.
Sargent
,
R. G.
,
2015
, “
An Interval Statistical Procedure for Use in Validation of Simulation Models
,”
J. Simul.
,
9
(
3
), pp.
232
237
.10.1057/jos.2014.30
30.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2006
, “
Validation of Models With Multivariate Output
,”
Reliab. Eng. Syst. Saf.
,
91
(
8
), pp.
861
871
.10.1016/j.ress.2005.09.004
31.
Kullback
,
J. L.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.10.1214/aoms/1177729694
32.
Shannon
,
C.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.10.1002/j.1538-7305.1948.tb01338.x
33.
Lamperti
,
F.
,
2018
, “
Empirical Validation of Simulated Models Through the Gsl-Div: An Illustrative Application
,”
J. Econ. Interact. Coord.
,
13
(
1
), pp.
143
171
.10.1007/s11403-017-0206-3
34.
Lamperti
,
F.
,
2018
, “
An Information Theoretic Criterion for Empirical Validation of Simulation Models
,”
Econometrics Stat.
,
5
, pp.
83
106
.10.1016/j.ecosta.2017.01.006
35.
Marks
,
R. E.
,
2013
, “
The Palgrave Encyclopedia of Strategic Management
,”
Monte Carlo
Simulations
,
M.
Augier
, and
D. J.
Teece
, eds.,
Palgrave Macmillan
, London, UK.
36.
Klir
,
G. J.
,
2006
,
Uncertainty and Information: Foundations of Generalized Information Theory
,
Wiley
, Hoboken, NJ.
37.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.10.1016/j.jcp.2006.03.037
38.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
, Hoboken, NJ.
39.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.10.1016/j.cma.2007.07.030
40.
Coleman
,
H. W.
, and
Stern
,
F.
,
1997
, “
Uncertainties and Cfd Code Validation
,”
J. Fluids Eng.
,
119
(
4
), pp.
795
803
.10.1115/1.2819500
41.
Hällqvist
,
R.
,
Braun
,
R.
,
Eek
,
M.
, and
Krus
,
P.
,
2021
, “
Optimal Selection of Model Validation Experiments: Guided by Coverage
,”
ASME J. Verification, Validation Uncertainty Quantif.
,
6
(
3
), p. 031006.10.1115/1.4051497
42.
Kaizer
,
J.
,
2020
, “
Progress Toward a Complete Set of Errors for Modeling and Simulation
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
5
(
3
), p. 031002.10.1115/1.4048311
43.
Freitas
,
C. J.
,
2020
, “
Standards and Methods for Verification, Validation, and Uncertainty Assessments in Modeling and Simulation
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
5
(
2
), p. 021001.10.1115/1.4047274
44.
Eça
,
L.
,
Dowding
,
K.
, and
Roache
,
P. J.
,
2022
, “
On the Interpretation and Scope of the V&V20 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,”
ASME J. Verification, Validation Uncertainty Quantif.
, 7(2), p. 021005.10.1115/1.4053854
45.
Eça
,
L.
,
Dowding
,
K.
,
Moorcroft
,
D.
, and
Ghia
,
U.
,
2022
, “
Comparison of the V&V10.1 and V&V20 Modeling Error Quantification Procedures for the V&V10.1 Example
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
7
(
2
), p. 021004.10.1115/1.4053881
46.
Yu
,
Z.
,
Yinhao
,
W.
,
Yizhuo
,
H.
,
Dayong
,
W.
, and
Tianhao
,
W.
,
2021
, “
Application of Area Metric in Reliability Evaluation of Simulation Models
,” IEEE International Conference on Power, Intelligent Computing and Systems (
ICPICS
), Shenyang, China, July
29
31
.10.1109/ICPICS52425.2021.9524181
47.
Barnett
,
V. D.
,
1969
, “
Simultaneous Pairwise Linear Structural Relationships
,”
Biometrics
,
25
(
1
), pp.
129
142
.10.2307/2528684
48.
Ludbrook
,
J.
,
2010
, “
Confidence in Altman-Bland Plots: A Critical Review of the Method of Differences
,”
Clinical Exp. Pharmacol. Physiol.
,
37
(
2
), pp.
143
149
.10.1111/j.1440-1681.2009.05288.x
49.
Stevens
,
N. T.
, and
Anderson-Cook
,
C. M.
,
2017
, “
Comparing the Reliability of Related Populations With the Probability of Agreement
,”
Technometrics
,
59
(
3
), pp.
371
380
.10.1080/00401706.2016.1214180
50.
Stevens
,
N. T.
, and
Anderson-Cook
,
C. M.
,
2017
, “
Quantifying Similarity in Reliability Surfaces Using the Probability of Agreement
,”
Qual. Eng.
,
29
(
3
), pp.
395
408
.10.1080/08982112.2017.1312004
51.
Stevens
,
N. T.
,
Steiner
,
S. H.
, and
MacKay
,
R. J.
,
2018
, “
Comparing Heteroscedastic Measurement Systems With the Probability of Agreement
,”
Stat. Methods Med. Res.
,
27
(
11
), pp.
3420
3435
.10.1177/0962280217702540
52.
Stevens
,
N. T.
,
Rigdon
,
S. E.
, and
Anderson-Cook
,
C. M.
,
2018
, “
Bayesian Probability of Predictive Agreement for Comparing the Outcome of Two Separate Regressions
,”
Qual. Reliab. Eng. Int.
,
34
(
6
), pp.
968
978
.10.1002/qre.2284
53.
Stevens
,
N. T.
,
Rigdon
,
S. E.
, and
Anderson-Cook
,
C. M.
,
2020
, “
Bayesian Probability of Agreement for Comparing the Similarity of Response Surfaces
,”
J. Qual. Technol.
,
52
(
1
), pp.
67
80
.10.1080/00224065.2019.1569961
54.
Atkinson
,
A. D.
,
Hill
,
R. R.
,
Pignatiello
,
J. J.
,
Vining
,
G. G.
,
White
,
E. D.
, and
Chicken
,
E.
,
2017
, “
Dynamic Model Validation Metric Based on Wavelet Thresholded Signals
,”
J. Verif., Validation Uncertainty Quantif.
,
2
(
2
), p. 021002.10.1115/1.4036965
55.
Cavanaugh
,
J. E.
, and
Neath
,
A. A.
,
2019
, “
The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements
,”
WIREs Comput. Stat.
,
11
(
3
), p. e1460.10.1002/wics.1460
56.
Maupin
,
K.
, and
Swiler
,
L. P.
,
2017
, “
Validation Metrics for Deterministic and Probabilistic Data
,” Sandia Report No. SAND2016-1421.
57.
Storm
,
S. M.
,
Hill
,
R. R.
,
Pignatiello
,
J. J.
,
White
,
E. D.
, and
Vining
,
G. G.
,
2017
, “
F-Statistic for Model Validation Over Experimental Regions Using Least Squares Response Surfaces
,”
Int. J. Exp. Des. Process Optim.
,
5
(
3
), pp.
133
150
.10.1504/IJEDPO.2017.087588
You do not currently have access to this content.