Abstract

The overset method and associated interpolation schemes are usually thoroughly verified only on synthetic or academic test cases for which conclusions might not directly translate to real engineering problems. In the present work, an overset grid method is used to simulate a rudder-propeller flow, for which a comprehensive verification and validation study is performed. Three overset-related interpolation schemes (first order inverse distance, second order nearest cell gradient and third order least squares) are tested to quantify and qualify numerical errors on integral quantities, mass imbalance, flow features and rudder pressure distributions. The performance overhead is also measured to help make accuracy versus performance balance decisions. Rigorous solution verification is performed to estimate time and space Discretization, iterative and statistical uncertainties. Validation of the propeller-rudder flow against experimental data is also done. The results show that, while the choice of interpolation scheme has minimal impact on time-averaged integral quantities (like propeller and rudder forces), they do influence the smoothness of the time signals, with the first order scheme resulting in large intensity high-frequency temporal oscillations. Lower order interpolation methods also produce more interpolation artifacts in fringe cells, which are then convected downstream. Mass imbalance is also affected by the interpolation scheme, with higher order schemes such as the third order least squares approach resulting in an order of magnitude lower flux errors. The limitations of first order schemes do not, however, result in significant lower computational overhead, with the second order nearest cell gradient being even cheaper than the inverse distance scheme in the tested implementation. Lastly, validation shows promising results with rudder forces within 10% of the experiments.

References

1.
Lemaire
,
S.
,
Vaz
,
G.
,
Rijswijk
,
M. D.-V.
, and
Turnock
,
S. R.
,
2022
, “
On the Accuracy, Robustness, and Performance of High Order Interpolation Schemes for the Overset Method on Unstructured Grids
,”
Int. J. Numer. Methods Fluids
,
94
(
2
), pp.
152
187
.10.1002/fld.5050
2.
Chandar
,
D. D.
,
Boppana
,
B.
, and
Kumar
,
V.
,
2018
, “
A Comparative Study of Different Overset Grid Solvers Between OpenFOAM, StarCCM+ and Ansys-Fluent
,”
AIAA
Paper No. 2018-1564.10.2514/6.2018-1564
3.
Chen
,
H.-C.
, and
Chen
,
M.
,
1998
, “
Chimera RANS Simulation of a Berthing DDG-51 Ship in Translational and Rotational Motions
,”
Int. J. Offshore Polar Eng.
,
8
(
3
), pp.
182
191
.https://onepetro.org/IJOPE/article-abstract/27064/Chimera-RANS-Simulation-of-a-Berthing-DDG-51-Ship
4.
Boger
,
D. A.
, and
Dreyer
,
J.
,
2006
, “
Prediction of Hydrodynamic Forces and Moments for Underwater Vehicles Using Overset Grids
,”
AIAA
Paper No. 2006-1148.10.2514/6.2006-1148
5.
Carrica
,
P. M.
,
Ismail
,
F.
,
Hyman
,
M.
,
Bhushan
,
S.
, and
Stern
,
F.
,
2013
, “
Turn and Zigzag Maneuvers of a Surface Combatant Using a URANS Approach With Dynamic Overset Grids
,”
J. Mar. Sci. Technol.
,
18
(
2
), pp.
166
181
.10.1007/s00773-012-0196-8
6.
Shen
,
Z.
,
Wan
,
D.
, and
Carrica
,
P. M.
,
2015
, “
Dynamic overset Grids in OpenFOAM With Application to KCS Self-Propulsion and Maneuvering
,”
Ocean Eng.
,
108
, pp.
287
306
.10.1016/j.oceaneng.2015.07.035
7.
Windt
,
C.
,
Davidson
,
J.
,
Chandar
,
D. D.
, and
Ringwood
,
J. V.
,
2019
, “
On the Importance of Advanced Mesh Motion Methods for WEC Experiments in CFD-Based Numerical Wave Tanks
,”
VIII International Conference on Computational Methods in Marine Engineering MARINE 2019
,
R.
Ringsberg
,
J.
Bensow
, eds.,
International Center for Numerical Methods in Engineering (CIMNE)
,
Gothenburg, Sweden
, pp.
145
156
.
8.
Völkner
,
S.
,
Brunswig
,
J.
, and
Rung
,
T.
,
2017
, “
Analysis of Non-Conservative Interpolation Techniques in Overset Grid Finite Volume Methods
,”
Comput. Fluids
,
148
, pp.
39
55
.10.1016/j.compfluid.2017.02.010
9.
Chandar
,
D. D.
,
2018
, “
Assessment of Interpolation Strategies and Conservative Discretizations on Unstructured Overset Grids in OpenFOAM
,”
AIAA
Paper No. 2018-0828.10.2514/6.2018-0828
10.
Chandar
,
D. D.
,
2019
, “
On Overset Interpolation Strategies and Conservation on Unstructured Grids in OpenFOAM
,”
Comput. Phys. Commun.
,
239
, pp.
72
83
.10.1016/j.cpc.2019.01.009
11.
Chandar
,
D. D.
, and
Sitaraman
,
J.
,
2022
, “
A Flux Correction Approach for the Pressure Equation in Incompressible Flows on Overset Meshes in OpenFOAM
,”
Comput. Phys. Commun.
,
273
, p.
108279
.10.1016/j.cpc.2021.108279
12.
Brazell
,
M. J.
,
Sitaraman
,
J.
, and
Mavriplis
,
D. J.
,
2016
, “
An Overset Mesh Approach for 3D Mixed Element High-Order Discretizations
,”
J. Comput. Phys.
,
322
, pp.
33
51
.10.1016/j.jcp.2016.06.031
13.
Gomes
,
T.
,
Lemaire
,
S.
, and
Vaz
,
G.
,
2022
, “
Code and Solution Verification of Sliding and Overset Grid Methods on Wind Turbine Flows
,”
ASME
Paper No. OMAE2022-81337.10.1115/OMAE2022-81337
14.
Dooley
,
G.
,
Ezequiel Martin
,
J.
,
Buchholz
,
J. H.
, and
Carrica
,
P. M.
,
2020
, “
Ship Airwakes in Waves and Motions and Effects on Helicopter Operation
,”
Comput. Fluids
,
208
, p.
104627
.10.1016/j.compfluid.2020.104627
15.
Gatin
,
I.
,
Vukcevic
,
V.
,
Jasak
,
H.
, and
Lalovic
,
I.
,
2018
, “
Manoeuvring Simulations Using the Overset Grid Technology in FOAM-Extend
,”
ASME
Paper No. OMAE2021-64014.10.1115/OMAE2021-64014
16.
Molland
,
A. F.
, and
Turnock
,
S. R.
,
1995
,
Wind Tunnel Tests on the Effect of a Ship Hull on Rudder-Propeller Performance at Different Angles of Drift
,
University of Southampton
,
Southampton, UK
.
17.
Turnock
,
S. R.
,
1990
,
A Test Rig for the Investigation of Ship Propeller/Rudder Interactions
,
University of Southampton
,
Southampton, UK
.
18.
Molland
,
A. F.
, and
Turnock
,
S. R.
,
2022
,
Marine Rudders, Hydrofoils and Control Surfaces
, 2nd ed.,
Elsevier
,
Butterworth-Heinemann, Oxford, UK
.
19.
Phillips
,
A. B.
,
Turnock
,
S. R.
, and
Furlong
,
M.
,
2010
, “
Accurate Capture of Propeller-Rudder Interaction Using a Coupled Blade Element Momentum-RANS Approach
,”
Ship Technol. Res.
,
57
(
2
), pp.
128
139
.10.1179/str.2010.57.2.005
20.
Villa
,
D.
,
Franceschi
,
A.
, and
Viviani
,
M.
,
2020
, “
Numerical Analysis of the Rudder-Propeller Interaction
,”
J. Mar. Sci. Eng.
,
8
(
12
), p.
990
.10.3390/jmse8120990
21.
Badoe
,
C. E.
,
Phillips
,
A. B.
, and
Turnock
,
S. R.
,
2015
, “
Influence of Drift Angle on the Computation of Hull-Propeller-Rudder Interaction
,”
Ocean Eng.
,
103
, pp.
64
77
.10.1016/j.oceaneng.2015.04.059
22.
Yilmaz
,
N.
,
Aktas
,
B.
,
Atlar
,
M.
,
Fitzsimmons
,
P. A.
, and
Felli
,
M.
,
2020
, “
An Experimental and Numerical Investigation of Propeller-Tudder-Hull Interaction in the Presence of Tip Vortex Cavitation (TVC)
,”
Ocean Eng.
,
216
(
May
), p.
108024
.10.1016/j.oceaneng.2020.108024
23.
Di Mascio
,
A.
,
Dubbioso
,
G.
,
Muscari
,
R.
, and
Felli
,
M.
,
2015
, “
CFD Analysis of Propeller-Rudder Interaction
,”
International Society of Offshore and Polar Engineers
(
ISOPE
),
Kona, Big Island, Hawaii
, June 21–26, pp.
946
950
.https://www.researchgate.net/publication/280147383_CFD_Analysis_of_Propeller-Rudder_Interaction
24.
Zhirong
,
S.
,
Decheng
,
W.
, and
Carrica
,
P. M.
,
2014
, “
RANS Simulations of Free Maneuvers With Moving Rudders and Propellers Using Overset Grids in OpenFOAM
,”
SIMMAN workshop on Verification and Validation of Ship Maneuvering Simulation Methods
,
Lyngby, Denmark
, Dec.
8
10
.https://dcwan.sjtu.edu.cn/userfiles/2014-1-34%20_RANS_Simulations_of_Free_Maneuvers_with_Moving_Rudders_and_Propellers_Using.pdf
25.
Benek
,
J. A.
,
Buning
,
P. G.
, and
Steger
,
J. L.
,
1985
, “
A 3-D Chimera Grid Embedding Technique
,”
AIAA
Paper No.
85
1523
.10.2514/6.1985-1523
26.
Schreck
,
E.
, and
Peric
,
M.
,
2012
, “
Overset Grids in STAR-CCM+: Methodology, Applications and Future Developments
,” .
27.
Deng
,
G.
,
Leroyer
,
A.
,
Guilmineau
,
E.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Wackers
,
J.
,
2016
, “
CFD Simulation of PMM Motion in Shallow Water for the DTC Container Ship
,”
4th MASHCON-International Conference on Ship Manoeuvring in Shallow and Confined Water with Special Focus on Ship Bottom Interaction
,
Hamburg, Germany
, May 23–25, pp.
93
98
.https://hal.science/hal-02567271/document
28.
Noack
,
R. W.
,
2005
, “
DiRTlib: A Library to Add an Overset Capability to Your Flow Solver
,”
AIAA
Paper No.
2005
5116
.10.2514/6.2005-5116
29.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
30.
Brouwer
,
J.
,
Tukker
,
J.
,
Klinkenberg
,
Y.
, and
Rijsbergen
,
M.
,
2019
, “
Random Uncertainty of Statistical Moments in Testing: Mean
,”
Ocean Eng.
,
182
(
April
), pp.
563
576
.10.1016/j.oceaneng.2019.04.068
31.
Molland
,
A. F.
, and
Turnock
,
S. R.
,
1990
,
Wind tunnel Test Results for a Model Ship Propeller Based on a Modified Wageningen B4.40
,
University of Southampton
,
Southampton, UK
.
32.
Turnock
,
S. R.
,
1990
,
Computer Aided Design and Numerically Controlled Manufacture of a Split Mold for a Composite Model Ship Propeller
,
University of Southampton
,
Southampton, UK
.
33.
Vaz
,
G.
,
Jaouen
,
F.
, and
Hoekstra
,
M.
,
2009
, “
Free-Surface Viscous Flow Computations: Validation of URANS Code FreSCo
,”
ASME
Paper No. OMAE2009-79398.10.1115/OMAE2009-79398
34.
Klaij
,
C. M.
, and
Vuik
,
C.
,
2013
, “
SIMPLE-Type Preconditioners for Cell-Centered, Colocated Finite Volume Discretization of Incompressible Reynolds-Averaged Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
71
(
7
), pp.
830
849
.10.1002/fld.3686
35.
Noack
,
R. W.
,
2005
, “
SUGGAR: A General Capability for Moving Body Overset Grid Assembly
,”
AIAA
Paper No. 2005-5117.10.2514/6.2005-5117
36.
Noack
,
R. W.
, and
Boger
,
D.
,
2009
, “
Improvements to SUGGAR and DiRTlib for Overset Store Separation Simulations
,”
AIAA
Paper No. 2009-340.10.2514/6.2009-340
37.
Cadence, "Pointwise," Version V18.4R3, accessed Jan. 18, 2023, https://www.pointwise.com
38.
PDC, “GridPro,” Version v7, accessed Jan. 18, 2023, https://www.gridpro.com
39.
Foeth
,
E.-J.
, and
Rijswijk
,
M. D.-V.
,
2019
, “
Remodeling the B-Series Geometry in a CAD Environment
,”
6th International Symposium on Marine Propulsors
,
Felli
M.
, and
Leotardi
C.
, eds., 26 May,
Rome, Italy
.
40.
Robert McNeel and Associates, “Rhinoceros,” version V7, accessed Jan. 18, 2023, https://www.rhino3d.com
41.
Lammeren
,
W. P. A.
,
Manen
,
J. D.
, and
Oosterveld
,
M. W. C.
,
1970
, “
The Wageningen B-Screw Series
,”
Schip en Werf
,
5
, pp.
88
103
.https://trid.trb.org/view/354
42.
Menter
,
F. R.
,
Egorov
,
Y.
, and
Rusch
,
D.
,
2006
, “
Steady and Unsteady Flow Modelling Using the k-skL Model
,”
Begell House
,
New York
, pp.
403
406
.
43.
Brouwer
,
J.
,
Tukker
,
J.
, and
Rijsbergen
,
M.
,
2015
, “
Uncertainty Analysis and Stationarity Test of Finite Length Time Series Signals
,” 4th International Conference on Advanced Model Measurement Technology for the Maritime Industry.
44.
Eça
,
L.
,
Vaz
,
G.
, and
Hoekstra
,
M.
,
2018
, “
On the Role of Iterative Errors in Unsteady Flow Simulations
,”
21st Numerical Towing Tank Symposium (NuTTS'18)
,
Cortona, Italy
, Sept. 30–Oct. 2, pp.
2
7
.
45.
Lemaire
,
S.
, and
Klapwijk
,
M.
,
2021
, “
PyTST: Python Library and Command Line Tool Performing the Transient Scanning Technique
,”
Version
v1.0, Zenodo.10.5281/zenodo.4428158
46.
Marin
,
L.
, and
Pandeli
,
T.
,
2019
, “
Acquisition of Maneuvring Characteristics of Ships Using RANS CFD
,”
Numerical Towing Tank Symposium
,
Tomar, Portugal
, Sept. 30–Oct. 2, pp.
1
6
.
You do not currently have access to this content.