Abstract

The presence of complex fluids in nature and industrial applications combined with the rapid growth of computer power over the past decades has led to an increasing number of numerical studies of non-Newtonian flows. In most cases, non-Newtonian models can be implemented in existing Newtonian solvers by relatively simple modifications of the viscosity. However, due to the scarcity of analytical solutions for non-Newtonian fluid flows and the widespread use of regularization methods, performing rigorous code verification is a challenging task. The method of manufactured solutions (MMS) is a powerful tool to generate analytical solutions for code verification. In this article, we present and discuss the results of three verification exercises based on MMS: (i) steady single-phase flow; (ii) unsteady two-phase flow with a smooth interface; (iii) unsteady two-phase flow with a free surface. The first and second exercises showed that rigorous verification of non-Newtonian fluid solvers is possible both on single- and two-phase flows. The third exercise revealed that “spurious velocities” typical of free-surface calculations with the Volume-of-Fluid model lead to “spurious viscosities” in the non-Newtonian fluid. The procedure is illustrated herein on a second-order finite volume flow solver, using the regularized Herschel-Bulkley fluid model as an example. The same methodology is however applicable to any flow solver and to all the rheological models falling under the class of generalized Newtonian fluid models.

References

1.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Irgens
,
F.
,
2014
,
Rheology and Non-Newtonian Fluids
,
Springer International Publishing
,
Cham, Switzerland
.
3.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
, pp.
107
240
.
4.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
5.
Wu
,
W.
,
Huang
,
X.
,
Yuan
,
H.
,
Xu
,
F.
, and
Ma
,
J.
,
2017
, “
A Modified Lattice Boltzmann Method for Herschel-Bulkley Fluids
,”
Rheol. Acta
,
56
(
4
), pp.
369
376
.10.1007/s00397-017-1000-9
6.
Grasinger
,
M.
,
Overacker
,
S.
, and
Brigham
,
J.
,
2018
, “
Numerical Investigation of the Accuracy, Stability, and Efficiency of Lattice Boltzmann Methods in Simulating non-Newtonian Flow
,”
Comput. Fluids
,
166
, pp.
253
274
.10.1016/j.compfluid.2018.02.008
7.
Saramito
,
P.
, and
Wachs
,
A.
,
2017
, “
Progress in Numerical Simulation of Yield Stress Fluid Flows
,”
Rheol. Acta
,
56
(
3
), pp.
211
230
.10.1007/s00397-016-0985-9
8.
Roache
,
P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
4
10
.10.1115/1.1436090
9.
Turgeon
,
E.
, and
Pelletier
,
D.
,
2002
, “
Verification and Validation in CFD Using an Adaptive Finite-Element Method
,”
Can. Aeronaut. Space J.
,
48
(
4
), pp.
219
231
.10.5589/q02-027
10.
Knupp
,
P.
,
2002
,
Verification of Computer Codes in Computational Science and Engineering
,
Chapman and Hall/CRC
,
New York
.
11.
Eça
,
L.
,
Hoekstra
,
M.
,
Hay
,
A.
, and
Pelletier
,
D.
,
2007
, “
Verification of RANS Solvers With Manufactured Solutions
,”
Eng. Comput.
,
23
(
4
), pp.
253
270
.10.1007/s00366-007-0067-9
12.
Veluri
,
S. P.
,
Roy
,
C. J.
, and
Luke
,
E. A.
,
2012
, “
Comprehensive Code Verification Techniques for Finite Volume CFD Codes
,”
Comput. Fluids
,
70
, pp.
59
72
.10.1016/j.compfluid.2012.04.028
13.
Blais
,
B.
, and
Bertrand
,
F.
,
2015
, “
On the Use of the Method of Manufactured Solutions for the Verification of CFD Codes for the Volume-Averaged Navier-Stokes Equations
,”
Comput. Fluids
,
114
, pp.
121
129
.10.1016/j.compfluid.2015.03.002
14.
Choudhary
,
A.
,
Roy
,
C. J.
,
Dietiker
,
J.-F.
,
Shahnam
,
M.
,
Garg
,
R.
, and
Musser
,
J.
,
2016
, “
Code Verification for Multiphase Flows Using the Method of Manufactured Solutions
,”
Int. J. Multiphase Flow
,
80
, pp.
150
163
.10.1016/j.ijmultiphaseflow.2015.12.006
15.
Eça
,
L.
,
Klaij
,
C. M.
,
Vaz
,
G.
,
Hoekstra
,
M.
, and
Pereira
,
F. S.
,
2016
, “
On Code Verification of RANS Solvers
,”
J. Comput. Phys.
,
310
, pp.
418
439
.10.1016/j.jcp.2016.01.002
16.
Venkatesan
,
J.
, and
Ganesan
,
S.
,
2017
, “
A Three-Field Local Projection Stabilized Formulation for Computations of Oldroyd-B Viscoelastic Fluid Flows
,”
J. Non-Newtonian Fluid Mech.
,
247
, pp.
90
106
.10.1016/j.jnnfm.2017.06.007
17.
Kim
,
N.
, and
Reddy
,
J.
,
2019
, “
3-D Least-Squares Finite Element Analysis of Flows of Generalized Newtonian Fluids
,”
J. Non-Newtonian Fluid Mech.
,
266
, pp.
143
159
.10.1016/j.jnnfm.2019.03.004
18.
Carrozza
,
M.
,
Hulsen
,
M.
, and
Anderson
,
P.
,
2020
, “
Benchmark Solutions for Flows With Rheologically Complex Interfaces
,”
J. Non-Newtonian Fluid Mech.
,
286
, p.
104436
.10.1016/j.jnnfm.2020.104436
19.
Kim
,
J.
, and
Park
,
J. D.
,
2020
, “
The Non-Homogeneous Flow of a Thixotropic Fluid Around a Sphere
,”
Appl. Math. Modell.
,
82
, pp.
848
866
.10.1016/j.apm.2020.02.009
20.
Mitsoulis
,
E.
, and
Tsamopoulos
,
J.
,
2017
, “
Numerical Simulations of Complex Yield-Stress Fluid Flows
,”
Rheol. Acta
,
56
(
3
), pp.
231
258
.10.1007/s00397-016-0981-0
21.
Souza Mendes
,
P. R.
, and
Dutra
,
E. S. S.
,
2004
, “
Viscosity Function for Yield-Stress Liquids
,”
Appl. Rheol.
,
14
(
6
), pp.
296
302
.10.1515/arh-2004-0016
22.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
23.
Maxima, “
Maxima, A Computer Algebra System, Version 5.37.2
,” accessed Mar. 2, 2021, https://maxima.sourceforge.io/
24.
Eça
,
L.
,
Vaz
,
G.
,
Toxopeus
,
S. L.
, and
Hoekstra
,
M.
,
2019
, “
Numerical Errors in Unsteady Flow Simulations
,”
ASME. J. Verif. Valid. Uncert.
, 4(2): p. 021001.10.1115/1.4043975
25.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Albuquerque, NM
.
26.
Wesseling
,
P.
,
2001
,
Principles of Computational Fluid Dynamics
, Vol.
29
,
Springer Berlin Heidelberg
,
Berlin, Germany
.
27.
Vaz
,
G.
,
Jaouen
,
F.
, and
Hoekstra
,
M.
,
2009
, “
Free-Surface Viscous Flow Computations: Validation of URANS Code FRESCO
,”
Proceedings of OMAE2009
,
Honolulu, HI,
May 31–June 5, pp.
425
437
.
28.
Miller
,
T. F.
, and
Schmidt
,
F. W.
,
1988
, “
Use of a Pressure-Weighted Interpolation Method for the Solution of the Incompressible Navier-Stokes Equations on a Nonstaggered Grid System
,”
Numer. Heat Transfer
,
14
(
2
), pp.
213
233
.10.1080/10407788808913641
29.
Klaij
,
C. M.
, and
Vuik
,
C.
,
2013
, “
SIMPLE-Type Preconditioners for Cell-Centered, Colocated Finite Volume Discretization of Incompressible Reynolds-Averaged Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
71
(
7
), pp.
830
849
.10.1002/fld.3686
30.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
31.
Klaij
,
C.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2018
, “
Design, Analysis and Verification of a Volume-of-Fluid Model With Interface-Capturing Scheme
,”
Comput. Fluids
,
170
, pp.
324
340
.10.1016/j.compfluid.2018.05.016
32.
Ferziger
,
J. H.
, and
Perić
,
M.
,
1996
,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
33.
Salari
,
K.
, and
Knupp
,
P.
,
2000
, “
Code Verification by the Method of Manufactured Solutions
,”.
34.
Syrakos
,
A.
,
Varchanis
,
S.
,
Dimakopoulos
,
Y.
,
Goulas
,
A.
, and
Tsamopoulos
,
J.
,
2017
, “
A Critical Analysis of Some Popular Methods for the Discretisation of the Gradient Operator in Finite Volume Methods
,”
Phys. Fluids
,
29
(
12
), p.
127103
.10.1063/1.4997682
35.
Syrakos
,
A.
,
Georgiou
,
G. C.
, and
Alexandrou
,
A. N.
,
2014
, “
Performance of the Finite Volume Method in Solving Regularised Bingham Flows: Inertia Effects in the Lid-Driven Cavity Flow
,”
J. Non-Newtonian Fluid Mech.
,
208–209
, pp.
88
107
.10.1016/j.jnnfm.2014.03.004
36.
Larsson
,
L.
, and
Raven
,
H. C.
,
2010
,
Ship Resistance and Flow
, Society of Naval Architects and Marine Engineers, Jersey City, NJ.
37.
Duraisamy
,
K.
,
Baeder
,
J. D.
, and
Liu
,
J. G.
,
2003
, “
Concepts and Application of Time-Limiters to High Resolution Schemes
,”
J. Sci. Comput.
,
19
(
1/3
), pp.
139
162
.10.1023/A:1025395707090
38.
Filali
,
A.
,
Khezzar
,
L.
, and
Mitsoulis
,
E.
,
2013
, “
Some Experiences With the Numerical Simulation of Newtonian and Bingham Fluids in Dip Coating
,”
Comput. Fluids
,
82
, pp.
110
121
.10.1016/j.compfluid.2013.04.024
You do not currently have access to this content.