Abstract

This paper presents an adaptive Kriging based method to perform uncertainty quantification (UQ) of the photoelectron sheath and dust levitation on the lunar surface. The objective of this study is to identify the upper and lower bounds of the electric potential and that of dust levitation height, given the intervals of model parameters in the one-dimensional (1D) photoelectron sheath model. To improve the calculation efficiency, we employ the widely used adaptive Kriging method (AKM). A task-oriented learning function and a stopping criterion are developed to train the Kriging model and customize the AKM. Experiment analysis shows that the proposed AKM is both accurate and efficient.

References

1.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Safety
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
2.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
3.
Zhao
,
J.
,
Wei
,
X.
,
Hu
,
Z.
,
He
,
X.
,
Han
,
D.
,
Hu
,
Z.
, and
Du
,
X.
,
2020
, “
Photoelectron Sheath Near the Lunar Surface: Fully Kinetic Modeling and Uncertainty Quantification Analysis
,”
AIAA
Paper No. 2020-1548.10.2514/6.2020-1548
4.
Zhao
,
J.
,
Wei
,
X.
,
Du
,
X.
,
He
,
X.
, and
Han
,
D.
,
2020
, Photoelectron Sheath on the Lunar Surface, Analytic Solutions and Fully-Kinetic Particle-in-Cell Simulations for Maxwellian and Kappa Distributions (under review).
5.
Nitter
,
T.
,
Havnes
,
O.
, and
Melandsø
,
F.
,
1998
, “
Levitation and Dynamics of Charged Dust in the Photoelectron Sheath Above Surfaces in Space
,”
J. Geophys. Res.: Space Phys.
,
103
(
A4
), pp.
6605
6620
.10.1029/97JA03523
6.
Fu
,
J. H.
,
1971
, “
Surface Potential of a Photoemitting Plate
,”
J. Geophys. Res.
,
76
(
10
), pp.
2506
2509
.10.1029/JA076i010p02506
7.
Poppe
,
A.
, and
Horányi
,
M.
,
2010
, “
Simulations of the Photoelectron Sheath and Dust Levitation on the Lunar Surface
,”
J. Geophys. Res.: Space Phys.
,
115
(
A8
), p. A08106.10.1029/2010JA015286
8.
Wang
,
J.
,
He
,
X.
, and
Cao
,
Y.
,
2008
, “
Modeling Electrostatic Levitation of Dust Particles on Lunar Surface
,”
IEEE Trans. Plasma Sci.
,
36
(
5
), pp.
2459
2466
.10.1109/TPS.2008.2003016
9.
Hirt
,
C.
, and
Featherstone
,
W.
,
2012
, “
A 1.5 km-Resolution Gravity Field Model of the Moon
,”
Earth Planet. Sci. Lett.
,
329–330
, pp.
22
30
.10.1016/j.epsl.2012.02.012
10.
Costes
,
N. C.
,
Carrier
,
W. D.
, III
,
Mitchell
,
J. K.
, and
Scott
,
R. F.
,
1970
, “
Apollo 11: Soil mechanics results
,”
J. Soil Mech. and Found. Div.
,
96
(
SM6
), pp.
2045
2080
.https://trid.trb.org/view/128268
11.
Mooney
,
C. Z.
,
1997
,
Monte Carlo Simulation
,
Sage Publications
,
Thousand Oaks, CA
.
12.
Rasmussen
,
C. E.
,
2004
,
Gaussian Processes in Machine Learning
(Advanced Lectures on Machine Learning),
Springer
,
Berlin
, pp.
63
71
.
13.
Jeong
,
S.
,
Murayama
,
M.
, and
Yamamoto
,
K.
,
2005
, “
Efficient Optimization Design Method Using Kriging Model
,”
J. Aircr.
,
42
(
2
), pp.
413
420
.10.2514/1.6386
14.
Wei
,
X.
, and
Du
,
X.
,
2020
, “
Robustness Metric for Robust Design Optimization Under Time-and Space-Dependent Uncertainty Through Metamodeling
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031110
.10.1115/1.4045599
15.
Shi
,
Y.
,
Lu
,
Z.
,
Xu
,
L.
, and
Chen
,
S.
,
2019
, “
An Adaptive multiple-Kriging-Surrogate Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Modell.
,
70
, pp.
545
571
.10.1016/j.apm.2019.01.040
16.
Moustapha
,
M.
, and
Sudret
,
B.
,
2019
, “
Surrogate-Assisted Reliability-Based Design Optimization: A Survey and a Unified Modular Framework
,”
Struct. Multidiscip. Optim.
,
60
(
5
), pp.
2157
–21
20
.10.1007/s00158-019-02290-y
17.
Yun
,
W.
,
Zhenzhou
,
L.
,
Zhou
,
Y.
, and
Jiang
,
X.
,
2018
, “
AK-SYSi: An Improved Adaptive Kriging Model for System Reliability Analysis With Multiple Failure Modes by a Refined U Learning Function
,” 59(1), pp.
263
278
.
18.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
.10.1016/j.ress.2016.09.003
19.
Ma
,
J.
,
Ren
,
Z.
,
Zhao
,
G.
,
Zhang
,
Y.
, and
Koh
,
C.-S.
,
2017
, “
A New Reliability Analysis Method Combining Adaptive Kriging With Weight Index Monte Carlo Simulation
,”
IEEE Trans. Magnetics
, 54(3), pp.
1
4
.10.1109/TMAG.2017.2763198
20.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
A System Reliability Method With Dependent Kriging Predictions
,”
ASME
Paper No. DETC2016-59030.10.1115/DETC2016-59030
21.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.10.1115/1.4034219
22.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.10.1115/1.4033428
23.
Zhang
,
L.
,
Lu
,
Z.
, and
Wang
,
P.
,
2015
, “
Efficient Structural Reliability Analysis Method Based on Advanced Kriging Model
,”
Appl. Math. Modell.
,
39
(
2
), pp.
781
793
.10.1016/j.apm.2014.07.008
24.
Lv
,
Z.
,
Lu
,
Z.
, and
Wang
,
P.
,
2015
, “
A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering
,”
Comput. Math. Appl.
,
70
(
5
), pp.
1182
1197
.10.1016/j.camwa.2015.07.004
25.
Cheng
,
J.
,
Liu
,
Z.
,
Wu
,
Z.
,
Li
,
X.
, and
Tan
,
J.
,
2015
, “
Robust Optimization of Structural Dynamic Characteristics Based on Adaptive Kriging Model and CNSGA
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
423
437
.10.1007/s00158-014-1140-9
26.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
27.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.-M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
.10.1007/s00158-011-0653-8
28.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
29.
Box
,
G. E.
, and
Tiao
,
G. C.
,
2011
,
Bayesian Inference in Statistical Analysis
,
Wiley
,
Reading, MA
.
30.
Browne
,
M. W.
,
2000
, “
Cross-Validation Methods
,”
J. Math. Psychol.
,
44
(
1
), pp.
108
132
.10.1006/jmps.1999.1279
31.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H.
,
2016
, “
Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Struct. Saf.
,
59
, pp.
86
95
.10.1016/j.strusafe.2015.12.003
32.
Wen
,
Z.
,
Pei
,
H.
,
Liu
,
H.
, and
Yue
,
Z.
,
2016
, “
A Sequential Kriging Reliability Analysis Method With Characteristics of Adaptive Sampling Regions and Parallelizability
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
170
179
.10.1016/j.ress.2016.05.002
33.
Yu
,
Z.
,
Sun
,
Z.
,
Wang
,
J.
, and
Chai
,
X.
,
2018
, “
A New Kriging-Based DoE Strategy and Its Application to Structural Reliability Analysis
,”
Adv. Mech. Eng.
, 10(3), pp.
1
13
.10.1177/1687814018767682
34.
Cheng
,
K.
,
Lu
,
Z.
,
Ling
,
C.
, and
Zhou
,
S.
,
2020
, “
Surrogate-Assisted Global Sensitivity Analysis: An Overview
,”
Struct. Multidisc. Optim.
, 61(3), pp.
1
27
.10.1007/s00158-019-02413-5
35.
Zhou
,
H.
,
Zhou
,
Q.
,
Liu
,
C.
, and
Zhou
,
T.
,
2018
, “
A Kriging Metamodel-Assisted Robust Optimization Method Based on a Reverse Model
,”
Eng. Optim.
,
50
(
2
), pp.
253
272
.10.1080/0305215X.2017.1307355
36.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.10.1115/1.4046648
37.
Chen
,
W.
,
Tsui
,
K.-L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1995
, “
Integration of the Response Surface Methodology With the Compromise Decision Support Problem in Developing a General Robust Design Procedure
,”
Proceedings of the 1995 ASME Design Engineering Technical Conference - Boston, MA, pp. 485–492.
38.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.10.2514/6.2007-1939
39.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
Aspects of the Matlab Toolbox DACE
,”
Technical University of Denmark
,
Lyngby, Denmark
, Technical Report No. IMM-REP-2002-13.
You do not currently have access to this content.