Graphical Abstract Figure

C¯pt at the outlet for the original case and the cases with SSJA under different axial positions

Graphical Abstract Figure

C¯pt at the outlet for the original case and the cases with SSJA under different axial positions

Close modal

Abstract

The sweeping jet actuator (SJA), widely studied as a potential flow control method in compressors and turbines, results in unnecessary performance losses due to its requirement for additional energy and mass input. In this study, a self-excited sweeping jet actuator (SSJA) method was introduced to enhance the application feasibility of SJA. The SSJA was arranged inside the blade, utilizing the pressure difference between the pressure and suction surfaces; therefore, additional energy input is no longer necessary. Wind tunnel tests were conducted to explore the effects and mechanisms of SSJA layout, size, and pressure difference between the blade surfaces in controlling flow separation in a compressor cascade with controlled diffusion airfoils (CDAs). Key aerodynamic parameters were measured using a five-hole pressure probe, and oil-flow visualization was also performed to represent flow characteristics. Results show that by using SSJA in the compressor cascade, a significant reduction of 27.04% of the total pressure loss coefficient at 2 deg incidence was obtained. This control effect has great potential for application in the field of passive flow control. The streamwise vortices (SVs) induced by SSJA enhance the momentum exchange between the mainstream and the boundary layer near the suction surface, which reduces the suction side boundary layer separation and thus greatly reduces the flow losses. In addition, due to the different flow separation characteristics and actuation conditions at different incidences, the SSJA flow control effect is sensitive to incidences.

References

1.
Dickens
,
T.
, and
Ivor
,
D.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.
2.
Hecklau
,
M.
,
Wiederhold
,
O.
,
Zander
,
V.
,
King
,
R.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Active Separation Control With Pulsed Jets in a Critically Loaded Compressor Cascade
,”
AIAA J.
,
49
(
8
), pp.
1729
1739
.
3.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2011
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.
4.
Evans
,
S.
, and
Hodson
,
H.
,
2012
, “
Separation-Control Mechanisms of Steady and Pulsed Vortex-Generator Jets
,”
AIAA J. Propuls. Power
,
28
(
6
), pp.
1201
1213
.
5.
Bernardini
,
C.
,
Benton
,
S.
,
Chen
,
J.
, and
Bons
,
J. P.
,
2013
, “
Pulsed Jets Laminar Separation Control Using Instability Exploitation
,”
AIAA J.
,
52
(
1
), pp.
104
115
.
6.
Liang
,
T.
,
Liu
,
B.
, and
Spence
,
S.
,
2021
, “
Effect of Boundary Layer Suction on the Corner Separation in a Highly Loaded Axial Compressor Cascade
,”
ASME J. Turbomach.
,
143
(
6
), p.
061002
.
7.
Akcayoz
,
E.
,
Duc Vo
,
H.
, and
Mahallati
,
A.
,
2016
, “
Controlling Corner Stall Separation With Plasma Actuators in a Compressor Cascade
,”
ASME J. Turbomach.
,
138
(
8
), p.
081008
.
8.
Meyer
,
W.
,
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
2010
, “
Endwall Contouring in an Axial Compressor: Improvement of Efficiency
,”
ASME J. Turbomach.
,
132
(
3
), p.
034501
.
9.
Wilfert
,
P.
,
Jeschke
,
P.
, and
Heinzelmann
,
F.
,
2014
, “
Numerical Investigation of Root Slotting in a Transonic Compressor
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1224
1234
.
10.
Zhao
,
G.
,
Chen
,
F.
,
Song
,
Y.
, and
Wang
,
Z.
,
2004
, “
Experimental Study on the Aerodynamic Performance of Swept Curved Blade
,”
Chin. J. Aeronaut.
,
17
(
3
), pp.
136
141
.
11.
Konrath
,
L.
,
Peitsch
,
D.
, and
Heinrich
,
A.
,
2022
, “
An Analysis of the Secondary Flow Around a Tandem Blade Under the Presence of a Tip Gap in a High-Speed Linear Compressor Cascade
,”
ASME J. Turbomach.
,
144
(
10
), p.
101003
.
12.
Godard
,
G.
, and
Stanislas
,
M.
,
2006
, “
Control of a Decelerating Boundary Layer. Part 1: Optimization of Passive Vortex Generators
,”
Aerosp. Sci. Technol.
,
10
(
3
), pp.
181
191
.
13.
Godard
,
G.
,
Foucaut
,
J.-M.
, and
Stanislas
,
M.
,
2006
, “
Control of a Decelerating Boundary Layer. Part 2: Optimization of Slotted Jets Vortex Generators
,”
Aerosp. Sci. Technol.
,
10
(
5
), pp.
394
400
.
14.
Zhang
,
H.
, and
Chen
,
S.
,
2021
, “
Pulsed Suction Control in a Highly Loaded Compressor Cascade With Low Suction Flowrates
,”
ASME J. Turbomach.
,
143
(
6
), p.
061006
.
15.
Zhang
,
H.
,
Chen
,
S.
,
Meng
,
Q.
, and
Zhou
,
L.
,
2018
, “
Flow Separation Control Using Unsteady Pulsed Suction Through Endwall Bleeding Holes in a Highly Loaded Compressor Cascade
,”
Aerosp. Sci. Technol.
,
72
, pp.
455
464
.
16.
Chen
,
S.
,
Yang
,
P.
,
Shi
,
Y.
, and
Meng
,
Q.
,
2023
, “
Active Flow Control in Compressor Cascades With Steady and Pulsed Jets
,”
J. Propul. Power
,
39
(
4
), pp.
501
510
.
17.
De Giorgi
,
M. G.
,
De Luca
,
C. G.
,
Ficarella
,
A.
, and
Serafini
,
S.
,
2015
, “
Comparison Between Synthetic Jets and Continuous Jets for Active Flow Control: Application on a NACA 0015 and a Compressor Stator Cascade
,”
Aerosp. Sci. Technol.
,
43
, pp.
256
280
.
18.
Traficante
,
S.
,
De Giorgi
,
M. G.
, and
Ficarella
,
A.
,
2015
, “
Flow Separation Control on a Compressor-Stator Cascade Using Plasma Actuators and Synthetic and Continuous Jets
,”
J. Aerosp. Eng.
,
29
(
3
), p.
04015056
.
19.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Flow-Separation Control Using Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.
20.
Wygnanski
,
I.
,
2024
, “
On the Need to Reassess the Design Tools for Active Flow Control
,”
Prog. Aerosp. Sci.
,
146
, p.
100995
.
21.
Meng
,
Q.
,
Chen
,
S.
,
Li
,
W.
, and
Wang
,
S.
,
2018
, “
Numerical Investigation of a Sweeping Jet Actuator for Active Flow Control in a Compressor Cascade
,”
ASME Turbo Expo 2018: Turbine Technical Conference and Exposition
, Paper No. GT2018-76052.
22.
Meng
,
Q.
,
Du
,
X.
,
Chen
,
S.
, and
Wang
,
S.
,
2021
, “
Numerical Study of Dual Sweeping Jet Actuators for Corner Separation Control in Compressor Cascade
,”
J. Therm. Sci.
,
30
(
1
), pp.
201
209
.
23.
Cerretelli
,
C.
,
Wuerz
,
W.
, and
Gharaibah
,
E.
,
2010
, “
Unsteady Separation Control on Wind Turbine Blades Using Fluidic Oscillators
,”
AIAA J.
,
48
(
7
), pp.
1302
1311
.
24.
Yang
,
P.
,
Chen
,
S.
,
Liu
,
G.
, and
Xu
,
C.
,
2024
, “
Corner Separation Control Using Sweeping Jet Actuator in a Compressor Cascade
,”
ASME J. Turbomach.
,
146
(
10
), p.
104503
.
25.
Koklu
,
M.
, and
Owens
,
L. R.
,
2021
, “
Comparison of Sweeping Jet Actuators With Different Flow-Control Techniques for Flow-Separation Control
,”
AIAA J.
,
55
(
3
), pp.
848
860
.
26.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “
Properties of a Sweeping Jet Emitted From a Fluidic Oscillator
,”
J. Fluid Mech.
,
857
, pp.
216
238
.
27.
Woszidlo
,
R.
,
Ostermann
,
F.
, and
Schmidt
,
H. J.
,
2019
, “
Fundamental Properties of Fluidic Oscillators for Flow Control Applications
,”
AIAA J.
,
57
(
3
), pp.
978
992
.
28.
Pack Melton
,
L. G.
,
2014
, “
Active Flow Separation Control on a NACA 0015 Wing Using Fluidic Actuators
,” AIAA Paper 2014-2364.
29.
Dandois
,
J.
,
Verbeke
,
C.
, and
Ternoy
,
F.
,
2020
, “
Performance Enhancement of a Vertical Tail Model With Sweeping Jets
,”
AIAA J.
,
58
(
12
), pp.
5202
5215
.
30.
Spens
,
A.
,
Pisano
,
A. P.
, and
Bons
,
J. P.
,
2023
, “
Leading-Edge Active Flow Control Enabled by Curved Fluidic Oscillators
,”
AIAA J.
,
61
(
4
), pp.
1675
1686
.
31.
Chen
,
S.
,
Li
,
W.
,
Yang
,
P.
, and
Liu
,
Y.
,
2023
, “
Aerodynamic Performance and Leakage Flow in Turbine Cascades With Sweeping Jet Actuators
,”
ASME J. Turbomach.
,
145
(
6
), p.
061015
.
32.
Chen
,
S.
, and
Li
,
W.
,
2022
, “
Effects of Combined Sweeping Jet Actuator and Winglet Tip on Aerodynamic Performance in a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
131
, p.
107956
.
33.
Liu
,
Y.
,
Sun
,
J.
,
Tang
,
Y.
, and
Lu
,
L.
,
2016
, “
Effect of Slot at Blade Root on Compressor Cascade Performance Under Different Aerodynamic Parameters
,”
Appl. Sci.
,
6
(
12
), p.
421
.
34.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Evaluation of Compressor Blading With Blade End Slots and Full-Span Slots in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121002
.
35.
Tang
,
Y.
,
Liu
,
Y.
,
Lu
,
L.
,
Lu
,
H.
, and
Wang
,
M.
,
2020
, “
Passive Separation Control With Blade-End Slots in a Highly Loaded Compressor Cascade
,”
AIAA J.
,
58
(
1
), pp.
85
97
.
36.
Feng
,
D.
,
Chen
,
F.
,
Song
,
Y.
,
Chen
,
H.
, and
Wang
,
Z.
,
2009
, “
Enhancing Aerodynamic Performances of Highly Loaded Compressor Cascades Via Air Injection
,”
Chin. J. Aeronaut.
,
22
(
2
), pp.
121
128
.
37.
Chen
,
H.
,
Liu
,
H.
,
Zhang
,
D.
, and
Li
,
L.
,
2017
, “
Vortex Structures for Highly-Loaded Subsonic Compressor Cascades With Slot Injection
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
Jun. 26–30
, Paper No. GT2017-63781.
38.
Lu
,
W.
,
Jiao
,
Y.
, and
Fu
,
X.
,
2022
, “
Concept of Self-excited Unsteady Flow Control on a Compressor Blade and Its Preliminary Proof by Numerical Simulation
,”
Aerosp. Sci. Technol.
,
123
, p.
107498
.
39.
Fietzke
,
B.
,
Mihalyovics
,
J.
,
King
,
R.
, and
Peitsch
,
D.
,
2022
, “
Binary Repetitive Model Predictive Active Flow Control Applied to an Annular Compressor Stator Cascade With Periodic Disturbances
,”
ASME J. Eng. Gas Turbine Power
,
144
(
1
), p.
011029
.
You do not currently have access to this content.