Abstract

Thermal design for the trailing edge of a turbine vane is critically challenging because the thinnest trailing-edge region has a low-thermal capacity, resulting in a much quicker thermal response to the hot gas. Cooling air for this region is usually extracted from the internal cooling passages inside the vane main body and thus the post-cooling air has a relatively weaker cooling potential. The thermal mismatch in the metal can be further exacerbated by the deposition of fine contaminant particulates resulting from the intake air as well as the unburned hydrocarbon fuel. Changes of the surface conditions caused by deposition are able to affect film cooling and to enhance heat transfer substantially. However, the deposition layer has low-thermal conductivity (approximately 0.1 W · m−1 · K−1), which thermally insulates the wall from the hot gas. The presence of deposition thereby further complicates the heat convection and conduction issues in this area. The current study had the uniqueness of evaluating deposition effects on vane trailing-edge film cooling by conducting deposition simulation experiments, where a scaled-up vane model featured cutback slots with a thick lip on the pressure surface. The coupling effects of deposition and the slot discharge coolant were investigated by examining the dynamic evolution of deposition and flow mixing of the coolant with the mainstream flows for various slot discharge ratios. The resulting film cooling performance was further assessed in adiabatic and conjugate heat transfer conditions to document the deposition-induced changes of heat/mass transfer and conduction. The thick slot lip and higher discharge ratios were found to reduce deposition, but simultaneously, to generate stronger flow mixing. Deposition on the pressure-surface degraded adiabatic cooling effectiveness regardless of deposition thickness, with a maximum reduction of 35%, whereas thicker deposition on the cutback surface was favorable to film cooling at the highest discharge ratio. The insulation effects of the deposition layer were not able to erase out the reduction in adiabatic effectiveness and potentially increased heat transfer levels over the rough deposition surface, resulting in lower overall cooling effectiveness. The reduction in overall effectiveness, however, was alleviated by increasing the discharge ratio.

References

1.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection: Part 2-External Aerodynamics, Total Pressure Losses, and Predictions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
249
257
.
2.
Holloway
,
S. D.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part II—Unsteady Framework for Experimental and Computational Results
,” ASME Paper No. GT-2002-30472.
3.
Joo
,
J.
, and
Durbin
,
P. A.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021102
.
4.
Yang
,
Z.
, and
Hu
,
H.
,
2011
, “
Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique
,”
AIAA J. Propul. Power
,
27
(
3
), pp.
700
709
.
5.
Benson
,
M.
,
Yapa
,
S. D.
,
Elkins
,
C.
, and
Eaton
,
J. K.
,
2013
, “
Experimental-Based Redesigns for Trailing Edge Film Cooling of Gas Turbine Blades
,”
ASME J. Turbomach.
,
135
(
4
), p.
041018
.
6.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2016
, “
Film Cooling Effectiveness Downstream of Trailing Edge Slots Including Cutback Surface Protuberances
,”
Int. J. Turbomach. Propuls. Power
,
1
(
1
), p.
4
.
7.
Yang
,
Z.
,
Johnson
,
M.
,
Posada
,
N.
,
Ou
,
S.
, and
Sondergaard
,
R.
,
2019
, “
Film Cooling on the Geometrically Modified Trailing Edge Model of Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
9
), p.
091012
.
8.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
286
300
.
9.
Martini
,
P.
, and
Schulz
,
A.
,
2004
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Wall Jets Ejected From a Slot with Internal Rib Arrays
,”
ASME J. Turbomach.
,
126
(
2
), pp.
229
236
.
10.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
11.
Ames
,
F.
,
Fiala
,
N.
, and
Johnson
,
J.
,
2007
, “
Gill Slot Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,” ASME Paper No. GT2007-27397. .
12.
Fiala
,
N. J.
,
Jaswal
,
I.
, and
Ames
,
F. E.
,
2008
, “
Letterbox Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,” ASME Paper No. GT2008-50474.
13.
Ling
,
J.
,
Yapa
,
S. D.
,
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Three-Dimensional Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(
3
), p.
031018
.
14.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2016
, “
Film Cooling Effectiveness Measurements on Trailing Edge Cutback Surface and Lands Following Novel Cross Corrugated Slot Geometry
,” ASME Paper No. GT2016-57371.
15.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051033
.
16.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
.
17.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101901
.
18.
Kistenmacher
,
D. A.
,
Todd Davidson
,
F.
, and
Bogard
,
D. G.
,
2014
, “
Realistic Trench Film Cooling With a Thermal Barrier Coating and Deposition
,”
ASME J. Turbomach.
,
136
(
9
), p.
091002
.
19.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2021
, “
Variations of Cooling Performance on Turbine Vanes due to Incipient Particle Deposition
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
235
(
8
), pp.
1832
1846
.
20.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
.
21.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2021
, “
An Experimental Study on Turbine Vane Leading-Edge Film Cooling With Deposition
,”
Appl. Therm. Eng.
,
198
, p.
117447
.
22.
Yang
,
X.
,
Hao
,
Z. H.
,
Feng
,
Z. P.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2024
, “
Conjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition
,”
ASME J. Turbomach.
,
146
(
1
), p.
011003
.
23.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2012
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051014
.
24.
Lawson
,
S. A.
,
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2013
, “
Simulations of Multiphase Particle Deposition on a Nonaxisymmetric Contoured Endwall With Film-Cooling
,”
ASME J. Turbomach.
,
135
(
3
), p.
031032
.
25.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effects of Surface Deposition, Hole Blockage, and TBC Spallation on Vane Endwall Film-Cooling
,” ASME Paper No. GT2006-90379,
26.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2024
, “
Experimental Assessment of Film Cooling From Cylindrical Holes Subject to Particulate Deposition
,”
Exp. Therm. Fluid Sci.
,
154
, p.
111155
.
27.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2025
, “
Experimental Characterization of Particulate Deposition on Turbine Vane Leading-Edge Models With Various Showerhead Cooling Geometries
,”
Int. J. Therm. Sci.
,
210
, p.
109595
.
28.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
29.
Richards
,
G. H.
,
Slater
,
P. N.
, and
Harb
,
J. N.
,
1993
, “
Simulation of Ash Deposit Growth in a Pulverized Coal-Fired Pilot Scale Reactor
,”
Energy Fuels
,
7
(
6
), pp.
774
781
.
30.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2022
, “
Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing
,”
ASME J. Turbomach.
,
144
(
6
), p.
061013
.
31.
Moffat
,
R. J.
,
1985
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
32.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
33.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.
34.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
35.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.
You do not currently have access to this content.