Graphical Abstract Figure

Time resolved PIV image sequence and synchronized shadowgraphs

Graphical Abstract Figure

Time resolved PIV image sequence and synchronized shadowgraphs

Close modal

Abstract

In the first part of this three-paper-series, time-resolved particle image velocimetry (TR-PIV) is performed in the transonic cascade to elucidate the shock-boundary layer interaction process and to provide comparative data for numerical studies and analysis in Parts II and III. The application of modern high-speed camera technology combined with a dual-pulse high-speed laser system enabled TR-PIV in the cascade for image areas covering ∼30% of the chord and ∼6% of the blade pitch at sampling intervals of 0.18 convective time units (CTUs) for the acquisition of multiple time sequences with duration of ∼2000 CTUs. The sampling rate is sufficient to resolve fluctuations of the separating region and accompanying movements of the shock system. To enable correlations between density variations of the shock system and velocity data, shadowgraphs are acquired synchronously with TR-PIV recordings at the same sampling rate. The TR-PIV and shadowgraph measurement setups, the image processing, and the resulting spatial resolutions are described in this part. An analysis of power spectral densities along near-wall rows in PIV data reveals the chord-wise spatial distribution of specific peaks and bands, which are also visible in the shock buffet spectrum. A spectral proper orthogonal decomposition (SPOD) of TR-PIV data is conducted to enable inspection of spatiotemporal modes of velocity fluctuations at specific broad peaks and tones in the buffet frequency range. Results indicate that upstream of the main shock, oblique shock waves occur at higher order harmonics of the fundamental buffet frequency and at specific high-frequency tones. The upstream propagation of disturbances beyond the excursion range of the main shock is demonstrated for the dominant buffet frequency as well as for the high-frequency tone and its first harmonic using cross-correlation maps. To locate possible sources of distinct tones at the entrance of the center passage, a SPOD of high-speed schlieren recordings is performed, capturing the shock systems in three passages. The results show that with these high-frequency tones, opposing vibrations of bow and lip shocks occur for neighboring blades.

References

1.
Giannelis
,
F. N.
,
Vio
,
A. G.
, and
Levinski
,
O.
,
2017
, “
A Review of Recent Developments in the Understanding of Transonic Shock Buffet
,”
Prog. Aerosp. Sci.
,
92
, pp.
39
84
.
2.
Lee
,
B.
,
2001
, “
Self-sustained Shock Oscillations on Airfoils at Transonic Speeds
,”
Prog. Aerosp. Sci.
,
37
(
2
), pp.
147
196
.
3.
Crouch
,
J. D.
,
Garbaruk
,
A.
,
Magidov
,
D.
, and
Travin
,
A.
,
2009
, “
Origin of Transonic Buffet on Aerofoils
,”
J. Fluid Mech.
,
628
, pp.
357
369
.
4.
Klose
,
B. F.
,
Morsbach
,
C.
,
Bergmann
,
M.
,
Hergt
,
A.
,
Klinner
,
J.
,
Grund
,
S.
, and
Kuegeler
,
E.
,
2024
, “
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme—Part 2: Shock-Capturing and Transonic Flows
,”
ASME J. Turbomach.
,
146
(
2
), p.
021006
.
5.
Klinner
,
J.
,
Munoz Lopez
,
E. J.
,
Hergt
,
A.
, and
Willert
,
C.
,
2023
, “
High-Resolution PIV Measurements of the Shock Boundary Layer Interaction Within a Highly Loaded Transonic Compressor Cascade
,”
ISPIV2023
,
San Diego, CA
,
June 19–21
. https://elib.dlr.de/197278/
6.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
7.
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2020
, “
Guide to Spectral Proper Orthogonal Decomposition
,”
AIAA J.
,
58
(
3
), pp.
1023
1033
.
8.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Ockenfels
,
T.
,
Grund
,
S.
, and
Gümmer
,
V.
,
2023
, “
The Current Gap Between Design Optimization and Experiments for Transonic Compressor Blades
,”
Int. J. Turbomach. Propul. Power
,
8
(
4
), p.
47
.
9.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Gümmer
,
V.
,
2023
, “
The New Chapter of Transonic Compressor Cascade Design at the DLR
,”
ASME J. Turbomach.
,
145
(
8
), p.
081001
.
10.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Klinner
,
J.
,
Grund
,
S.
,
Karboujian
,
J.
,
Flamm
,
J.
, and
Gümmer
,
V.
,
2023
, “
Investigations of the Unsteady Shock-Boundary Layer Interaction in a Transonic Compressor Cascade
,”
Turbo Expo
,
Boston, MA
,
June 26–30
.
11.
Giepman
,
R. H. M.
,
Schrijer
,
F. F. J.
, and
van Oudheusden
,
B. W.
,
2015
, “
High-Resolution PIV Measurements of a Transitional Shock Wave-Boundary Layer Interaction
,”
Exp. Fluids
,
56
(
6
), p.
113
.
12.
Klinner
,
J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Willert
,
C. E.
,
2021
, “
High-Speed PIV of Shock Boundary Layer Interactions in the Transonic Buffet Flow of a Compressor Cascade
,”
Exp. Fluids
,
62
(
3
), p.
58
.
13.
Klinner
,
J.
,
Munoz Lopez
,
E. J.
,
Hergt
,
A.
, and
Willert
,
C.
,
2024
, “
The Unsteady Shock-Boundary Layer Interaction in a Compressor Cascade: Time Resolved Measurements – Promotional Videos
,”
ZENODO
.
14.
Willert
,
C. E.
,
Mitchell
,
D. M.
, and
Soria
,
J.
,
2012
, “
An Assessment of High-Power Light-Emitting Diodes for High Frame Rate Schlieren Imaging
,”
Exp. Fluids
,
53
(
2
), pp.
413
421
.
15.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
16.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
Springer
,
Berlin
.
17.
Burrows
,
T.
,
2020
, “Spectral Proper Orthogonal Decomposition in Python,” https://github.com/tjburrows/spod_python
18.
Cottier
,
S.
,
Combs
,
C. S.
, and
Vanstone
,
L.
,
2019
, “
Spectral Proper Orthogonal Decomposition Analysis of Shock-Wave/Boundary-Layer Interactions
,”
AIAA Aviation Forum
,
Dallas, TX
,
June 17–21
.
19.
Hoffman
,
E. N. A.
,
Rodriguez
,
J. M.
,
Cottier
,
S. M.
,
Combs
,
C. S.
,
Bathel
,
B. F.
,
Weisberger
,
J. M.
,
Jones
,
S. B.
,
Schmisseur
,
J. D.
, and
Kreth
,
P. A.
,
2023
, “
Modal Analysis of Cylinder-Induced Transitional Shock-Wave/Boundary-Layer Interaction Unsteadiness
,”
AIAA J.
,
60
(
5
), pp.
2730
2748
.
20.
Hartmann
,
A.
,
Klaas
,
M.
, and
Schröder
,
W.
,
2012
, “
Time-Resolved Stereo PIV Measurements of Shock-Boundary Layer Interaction on a Supercritical Airfoil
,”
Exp. Fluids
,
52
(
3
), pp.
591
604
.
21.
Hergt
,
A.
,
Klinner
,
J.
,
Willert
,
C.
,
Grund
,
S.
, and
Steinert
,
W.
,
2022
, “
Insights Into the Unsteady Shock Boundary Layer Interaction
,”
Turbo Expo
,
Boston, MA
,
June 26–30
.
You do not currently have access to this content.