Graphical Abstract Figure

Wake-Boundary layer interaction

Graphical Abstract Figure

Wake-Boundary layer interaction

Close modal

Abstract

For the most part, the flow over an axial compressor blade is subjected to adverse pressure gradients. Under low Reynolds number conditions, the flow could separate off the blade surface especially on the suction side, where it first accelerates to a peak velocity and then decelerates to a higher-pressure condition at the blade exit. The “separation bubble” thus formed could, in many cases, trigger flow transition from laminar to turbulent conditions on reattachment further downstream of the point of separation. Since blade profile losses depend on the transition location, modifying the separation bubble due to any upstream generated disturbances is of great interest. In this article, the interaction between incoming wakes, which are generated periodically, and the separation bubble that exists on the blade surface is investigated. Results are presented from wind tunnel experiments conducted over a flat plate that is imposed with a surface pressure profile similar to that over a highly loaded compressor blade. The periodic wakes are introduced using an upstream bar passing mechanism that produces representative unsteady parameters. The spatial and temporal development of the flow along the mid-span region is described with the help of particle image velocimetry-based flow mapping at a relatively low Reynolds number of 210,000. Several interesting observations were made, but the most important one is the existence of a slow-moving thickened boundary layer feature that convects immediately behind the wake. While the calmed region that forms behind this feature can suppress the bubble, the thickened boundary layer itself is seen to have high unsteadiness and it contributes to a large momentum deficit.

References

1.
Johnsen
,
I. A.
, and
Bullock
,
R. O.
,
1965
, “
Aerodynamic Design of Axial-Flow Compressors
,”
NASA
,
Washington, DC
, NASA SP-36.
2.
Walker
,
G. J.
,
1989
, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
,
27
(
5
), pp.
595
602
.
3.
Pfeil
,
H.
,
Herbst
,
R.
, and
Schröder
,
T.
,
1983
, “
Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
ASME. J. Eng. Power
,
105
(
1
), pp.
130
137
.
4.
Dong
,
Y.
, and
Cumpsty
,
N. A.
,
1990
, “
Compressor Blade Boundary Layers: Part 2—Measurements With Incident Wakes
,”
ASME. J. Turbomach.
,
112
(
2
), pp.
231
240
.
5.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME. J. Turbomach.
,
113
(
4
), pp.
509
537
.
6.
Cumpsty
,
N. A.
,
Dong
,
Y.
, and
Li
,
Y. S.
,
1995
, “
Compressor Blade Boundary Layers in the Presence of Wakes
,”
Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
,
June 5–8
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4—Compressors
,”
ASME. J. Turbomach.
,
119
(
3
), pp.
426
444
.
8.
Hughes
,
J. D.
, and
Walker
,
G. J.
,
2000
, “
Natural Transition Phenomena on an Axial Compressor Blade
,”
ASME. J. Turbomach.
,
123
(
2
), pp.
392
401
.
9.
Gostelow
,
J. P.
, and
Thomas
,
R. L.
,
2005
, “
Response of a Laminar Separation Bubble to an Impinging Wake
,”
ASME. J. Turbomach.
,
127
(
1
), pp.
35
42
.
10.
Ottavy
,
X.
,
Vilmin
,
S.
,
Hodson
,
H.
, and
Gallimore
,
S.
,
2004
, “
The Effects of Wake-Passing Unsteadiness Over a Highly Loaded Compressor-Like Flat Plate
,”
ASME. J. Turbomach.
,
126
(
1
), pp.
13
23
.
11.
Wheeler
,
A. P. S.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2007
, “
The Effect of Wake Induced Structures on Compressor Boundary-Layers
,”
ASME. J. Turbomach.
,
129
(
4
), pp.
705
712
.
12.
Wheeler
,
A. P. S.
,
Dickens
,
A. M. J.
, and
Miller
,
R. J.
,
2018
, “
The Effect of Nonequilibrium Boundary Layers on Compressor Performance
,”
ASME. J. Turbomach.
,
140
(
10
), p.
101003
.
13.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2019
, “
Large Eddy Simulation of Boundary Layer Transition Mechanisms in a Gas-Turbine Compressor Cascade
,”
ASME. J. Turbomach.
,
141
(
6
), p.
061008
.
14.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
15.
Kanjirakkad
,
V.
, and
Irps
,
T.
,
2021
, “
Some Observations of the Behaviour of an Adverse Pressure Gradient Laminar Boundary Layer Under Wake Impingement
,”
Fluids
,
6
(
6
), p.
199
.
16.
Irps
,
T. J. B.
, and
Kanjirakkad
,
V.
,
2022
,
IUTAM Laminar-Turbulent Transition
, Vol.
38
,
S.
Sherwin
,
P.
Schmid
, and
X.
Wu
, eds.,
Springer
,
Cham
, pp.
407
418
.
17.
Narasimha
,
R.
, and
Prasad
,
S. N.
,
1994
, “
Leading Edge Shape for Flat Plate Boundary Layer Studies
,”
Exp. Fluids
,
17
(
5
), pp.
358
360
.
18.
Hobson
,
G. V.
,
Hansen
,
D. J.
,
Schnorenberg
,
D. G.
, and
Grove
,
D. V.
,
1998
, “
Effect of Reynolds Number on Separation Bubbles on Controlled-Diffusion Compressor Blades in Cascade
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
.
19.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image Matching
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.
20.
Rizvi
,
S. A. H.
, and
Mathew
,
J.
,
2017
, “
Large Eddy Simulation of Transitional Flow in a Compressor Cascade
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
You do not currently have access to this content.