Abstract

As designers investigate new cooling technologies to advance future gas turbine engines, manufacturing methods that are fast and accurate are needed. Additive manufacturing facilitates the rapid prototyping of parts at a cost lower than conventional casting but is challenged in accurately reproducing small features such as turbulators, pin fins, and film cooling holes. This study explores the potential application of additive manufacturing and advanced hole drill methods as tools to investigate cooling technologies for future turbine blade designs. Data from computed tomography scans are used to nondestructively evaluate each of the cooling features in the blade. The resulting flow performance of these parts is further related to the manufacturing through benchtop flow testing. Results show that while total blade flow is consistent for all additively manufactured cooled blades, flow through smaller regions of the blades shows variations. Shaped film cooling holes manufactured using a high-speed electrical discharge machining method are within tolerance in the metering section but do not expand at the specified angle in the diffuser even though design tolerances are met. In contrast to high-speed EDM, conventional EDM holes are undersized throughout the length of the hole. Due to the additive manufacturing process, the surface roughness was higher on the additively manufactured parts in the current study than has been previously reported for surface roughness of commonly used cast components. The roughness results show high levels on thin walls, particularly at the trailing edge as well as on downskin surfaces. Internal surface roughness is higher than external roughness at most locations on the blade. The results of this study confirm that additive manufacturing along with advanced hole drilling techniques offers faster development of blade cooling designs.

References

1.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,” Paper No. GT-2014-25570.
2.
Thole
,
K. A.
,
Barringer
,
M.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J.
,
Dennis
,
R.
,
Black
,
J.
, et al
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,” AIAA 2021-3489.
3.
Krewinkel
,
R.
,
Such
,
A.
,
De La Torre
,
A. O.
,
Wiedermann
,
A.
,
Castillo
,
D.
,
Rodriguez
,
S. A.
,
Schleifenbaum
,
J. H.
, and
Blaswich
,
M.
,
2020
, “
Design and Characterization of Additively Manufactured NGVs Operated in a Small Industrial Gas Turbine
,”
Int. J. Gas Turbine Propuls. Power Syst.
,
11
(
4
), pp.
36
44
.
4.
Lindbäck
,
M.
,
Frankolin
,
K.
,
Tuneskog
,
E.
,
Karlsson
,
B.
, and
Wang
,
L.
,
2023
, “
Development and Validation Under Engine Operation Environment of Additively Manufactured Hot Turbine Parts
,” Paper No. GT-2023-103771.
5.
Cecconi
,
M.
, and
Giovannetti
,
I.
,
2023
, “
Development of Additive Manufacturing Gas Turbine Hot Gas Path Vanes at Baker Hughes
,” Paper No. GT-2023-103043.
6.
Gibson
,
T.
, and
Romer
,
T.
,
2017
, “
Additive Advantage
,”
Mech. Eng.
,
139
(
12
), p.
35
.
7.
Kirka
,
M.
,
Ryan
,
D.
, and
Adair
,
D.
,
2020
, “
Full Scale Engine Demonstration of Additively Manufactured High Gamma Prime Turbine Blade
,” ORNL CRADA NFE 19-07619.
8.
Magerramova
,
L.
,
Vasilyev
,
B.
, and
Kinzburskiy
,
V.
,
2016
, “
Novel Designs of Turbine Blades for Additive Manufacturing
,” Paper No. GT-2016-56084.
9.
Thole
,
K. A.
,
Lynch
,
S. P.
, and
Wildgoose
,
A. J.
,
2021
, “Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing,”
Advances in Heat Transfer
,
J. P.
Abraham
,
J. M.
Gorman
, and
W.
Minkowycz
, eds.,
Elsevier
,
New York
, pp.
249
325
.
10.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
11.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Wagner
,
J. H.
,
Thole
,
K. A.
,
Arisi
,
A. N.
, and
Haldeman
,
C. W.
,
2023
, “
Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
145
(
6
), p.
061016
.
12.
McCormack
,
K. E.
,
Gailey
,
N. L.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2024
, “
Quantifying Part-to-Part Flow Variations and Cooling Effectiveness in Engine-Run Blades
,”
ASME J. Turbomach.
,
146
(
1
), p.
011002
.
13.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Tailoring Surface Roughness Using Additive Manufacturing to Improve Internal Cooling
,”
ASME J. Turbomach.
,
142
(
7
), p.
071004
.
14.
Wildgoose
,
A. J.
, and
Thole
,
K. A.
,
2023
, “
Heat Transfer and Pressure Loss of Additively Manufactured Internal Cooling Channels With Various Shapes
,”
ASME J. Turbomach.
,
145
(
7
), p.
071011
.
15.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
16.
Wu
,
Z.
,
Narra
,
S. P.
, and
Rollett
,
A.
,
2020
, “
Exploring the Fabrication Limits of Thin-Wall Structures in a Laser Powder Bed Fusion Process
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1–2
), pp.
191
207
.
17.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Additive Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014003
.
18.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Ong
,
R.
,
2001
, “
Melt Pool Size Control in Thin-Walled and Bulky Parts via Process Maps
,”
International Solid Freeform Fabrication Symposium
.
19.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Subramanian
,
R.
,
Kersting
,
L.
, and
Kulkarni
,
A.
,
2023
, “
Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels
,”
ASME J. Turbomach.
,
145
(
4
), p.
041013
.
20.
Ferster
,
K. K.
,
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Effects of Geometry, Spacing, and Number of Pin Fins in Additively Manufactured Microchannel Pin Fin Arrays
,”
ASME J. Turbomach.
,
140
(
1
), p.
011007
.
21.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Pressure Loss and Heat Transfer Performance for Additively and Conventionally Manufactured Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
108
(
B
), pp.
2502
2513
.
22.
Corbett
,
T. M.
,
Thole
,
K. A.
, and
Bollapragada
,
S.
,
2023
, “
Impacts of Pin Fin Shape and Spacing on Heat Transfer and Pressure Losses
,”
ASME J. Turbomach.
,
145
(
5
), p.
051014
.
23.
Krille
,
T.
,
Poser
,
R.
,
Von Wolfersdorf
,
J.
, and
Henze
,
M.
,
2023
, “
An Experimental Investigation on Pressure Loss and Local Heat Transfer Characteristics in Additively Manufactured Ribbed Cooling Configurations
,”
Int. J. Heat Mass Transfer
,
202
, p.
123668
.
24.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effectiveness Measurements of Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011009
.
25.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Performance of Public Film Cooling Geometries Produced Through Additive Manufacturing
,”
ASME J. Turbomach.
,
142
(
5
), p.
051009
.
26.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
27.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
28.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2017
, “
The Effect of a Meter-Diffuser Offset on Shaped Film Cooling Hole Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
139
(
9
), p.
091012
.
29.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2018
, “
The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles
,”
ASME J. Turbomach.
,
140
(
5
), p.
051002
.
30.
Jones
,
F. B.
,
Fox
,
D. W.
,
Oliver
,
T.
, and
Bogard
,
D. G.
,
2021
, “
Parametric Optimization of Film Cooling Hole Geometry
,” Paper No. GT-2021-59326.
31.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
,
144
(
12
), p.
121003
.
32.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
33.
Jameson
,
E. C.
,
2001
,
Electrical Discharge Machining
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
34.
Forrester
,
R. E.
,
Kimberlin
,
D. E.
, and
Lang
,
G. J.
, “
Complex Hole Shaping
,” US Patent, Patent No. US7041933B2.
35.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
36.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
37.
Becker
,
B.
,
Maier
,
D.
, and
Reinhart
,
C.
,
2012
, “
Computer Tomography Has Arrived in Automated Inspection Processes, Combining Material and Geometry Analyses
,”
Proceedings of 18th World Conference on Non-Destructive Testing
,
Durban, South Africa
,
Apr. 16–20
.
38.
Veley
,
E. M.
,
Thole
,
K. A.
,
Furgeson
,
M. T.
, and
Bogard
,
D. G.
,
2023
, “
Printability and Overall Cooling Performance of Additively Manufactured Holes With Inlet and Exit Rounding
,”
ASME J. Turbomach.
,
145
(
3
), p.
031017
.
39.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,” Paper No. GT-2000-0244.
40.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K.
, and
Shih
,
T. I. P.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
.
41.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45 Deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
,
120
(
3
), pp.
571
580
.
42.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45° Round-Corner Rib Heat Transfer Coefficient Measurements in a Square Channel
,” Paper No. 98-GT-176.
43.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
(
2
), pp.
381
389
.
44.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.
45.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,” Paper No. GT-2001-0163.
You do not currently have access to this content.