Graphical Abstract Figure

Schematic diagram of the baseline IITDs with mean rise angle of 21 deg: (a) linear IITD V1C1 and (b) annular IITD V1C1A

Graphical Abstract Figure

Schematic diagram of the baseline IITDs with mean rise angle of 21 deg: (a) linear IITD V1C1 and (b) annular IITD V1C1A

Close modal

Abstract

To reduce the engine’s length and weight, the concept of the integrated intermediate turbine duct (IITD) is proposed, in which the first row of the low-pressure turbine vanes is replaced by the turning struts in the intermediate turbine duct. The effects of the casing profile on the flow features and loss mechanism in the IITD are investigated by experimental, numerical, and theoretical methods. In the baseline case, the casing passage vortex at the exit of the IITD is featured with two branches, which is caused by the entrainment effect of the suction side leg of horseshoe vortex near casing. By making the casing profile upstream of the leading edge more downward convex, the thickness of the casing boundary layer can be reduced, and the horseshoe vortex is weakened. The structure of the exit casing secondary flow is thus more integral. In the IITD with higher mean rise angle, the entrainment effect has the ability to reduce the low-momentum fluid and suppress the separation on the suction surface. A method of controlling the casing secondary flow is proposed accordingly. To analyze the loss mechanism, the loss is broken down into the parts generated by mean vortex and turbulence theoretically. The casing boundary layer acceleration can lead to a larger velocity gradient and loss caused by mean vortex. While the turbulent dissipation will be reduced on the other hand. Large turbulent dissipation can also be generated when the mixing between the casing secondary flow and wake is enhanced.

References

1.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Interturbine Diffusers
,”
ASME J. Turbomach.
,
120
(
2
), pp.
298
304
.
2.
Marn
,
A.
,
Göttlich
,
E.
,
Cadrecha
,
D.
, and
Pirker
,
H. P.
,
2009
, “
Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept
,”
ASME J. Turbomach.
,
131
(
4
), p.
041014
.
3.
Sovran
,
G.
,
1967
,
Fluid Mechanics of Internal Flow
,
Elsevier
,
Amsterdam–London–New York
.
4.
Couey
,
P. T.
,
McKeever
,
C. W.
,
Malak
,
M. F.
,
Balamurugan
,
S.
,
Raju Veeraraghava
,
H.
, and
Dhinagaran
,
R.
,
2010
, “Computational Study of Geometric Parameter Influence on Aggressive Inter-Turbine Duct Performance,” ASME Paper No. GT2010-23604.
5.
Zhang
,
Y.
,
Hu
,
S.
,
Mahallati
,
A.
,
Zhang
,
X.-F.
, and
Vlasic
,
E.
,
2018
, “
Effects of Area Ratio and Mean Rise Angle on the Aerodynamics of Interturbine Ducts
,”
ASME J. Turbomach.
,
140
(
9
), p.
091006
.
6.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aeosp. Sci.
,
47
(
4
), pp.
249
279
.
7.
Hu
,
S.
,
Zhang
,
Y.
,
Zhang
,
X. F.
, and
Vlasic
,
E.
,
2011
, “Influences of Inlet Swirl Distributions on an Inter-Turbine Duct: Part I–Casing Swirl Variation,” ASME Paper No. GT2011-45554.
8.
Dong
,
F.
, and
Zhou
,
C.
,
2020
, “
Streamwise Vortex Transportation and Loss Generation in an Intermediate Turbine Duct
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
234
(
6
), pp.
766
776
.
9.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
10.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
.
11.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines - A Review
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
12.
Simpson
,
R. L.
,
2001
, “
Junction Flows
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
415
443
.
13.
Spataro
,
R.
,
Santner
,
C.
,
Lengani
,
D.
, and
Göttlich
,
E.
,
2012
, “On the Flow Evolution Through a LP Turbine With Wide-Chord Vanes in an S-Shaped Channel,” ASME Paper No. GT2012-68178.
14.
Bader
,
P.
,
Sanz
,
W.
,
Spataro
,
R.
, and
Göttlich
,
E.
,
2017
, “
Flow Evolution Through a Turning Midturbine Frame With Embedded Design
,”
J. Propul. Power
,
33
(
6
), pp.
1478
1488
.
15.
Pramstrahler
,
S.
,
Peters
,
A.
,
García De Albéniz
,
M. L.
,
Leitl
,
P. A.
,
Heitmeir
,
F.
, and
Marn
,
A.
,
2022
, “The Impact of Inlet Flow Angle on Turbine Vane Frame Aerodynamic Performance,” ASME Paper No. GT2022-78065.
16.
Merli
,
F.
,
Hafizovic
,
A.
,
Krajnc
,
N.
,
Schien
,
M.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2022
, “Aerodynamic Assessment of Turbine Center Frames and Turbine Vane Frames Under the Influence of Purge Flows,” ASME Paper No. GT2022-82502.
17.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
,
1999
, “
Controlling the Secondary Flow in a Turbine Cascade by Three-Dimensional Airfoil Design and Endwall Contouring
,”
ASME J. Turbomach.
,
121
(
2
), pp.
191
199
.
18.
Poehler
,
T.
,
Niewoehner
,
J.
, and
Jeschke
,
P.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5-Stage Axial Turbine–Part I:Design and Novel Numerical Analysis Method
,”
ASME J. Turbomach.
,
137
(
8
), p.
081009
.
19.
Niewoehner
,
J.
,
Poehler
,
T.
, and
Jeschke
,
P.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5 Stage Axial Tubine–Part II: Experimental Validation
,”
ASME J. Turbomach.
,
137
(
8
), p.
081010
.
20.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2013
, “
Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
21.
Obaida
,
H. M. B.
,
Rona
,
A.
, and
Gostelow
,
I. P.
,
2019
, “
Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring
,”
ASME J. Turbomach.
,
141
(
6
), p.
061009
.
22.
Wallin
,
F.
, and
Eriksson
,
L.-E.
,
2006
, “Response Surface-Based Transition Duct Shape Optimization,” ASME Paper No. GT2006-90978.
23.
Naylor
,
E. M. J.
,
Dueñas
,
C. O.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2010
, “
Optimization of Nonaxisymmetric Endwalls in Compressor S-Shaped Ducts
,”
ASME J. Turbomach.
,
132
(
1
), p.
011011
.
24.
Yang
,
J.
,
Liu
,
Y.
,
Wu
,
N.
,
Zhang
,
M.
,
Shao
,
W.
, and
Liu
,
Y.
,
2021
, “
A Novel Preliminary Design Method for Intermediate Compressor/Turbine Ducts
,”
Aerosp. Sci. Technol.
,
117
, p.
106974
.
25.
Gräsel
,
J.
,
Pierré
,
l.
, and
Demolis
,
J.
,
2006,
, “
Parametric Interturbine Duct Design and Optimisation
,”
Proceedings of 25th International Congress of the Aeronautical Sciences, ICAS
,
Hamburg, Germany
.
26.
Hu
,
S.
,
Zhang
,
X. F.
, and
Benner
,
M.
,
2010
, “Geometric Optimization of Aggressive Inter-Turbine Ducts,” ASME Paper No. IMECE2010-37323.
27.
Yang
,
C.
, and
Wu
,
H.
,
2016
, “Optimized Aerodynamic design of Aggressive Intermediate Turbine Duct With Strutfairings Using Genetic Algorithms,” ASME Paper No. GT2016-56639.
28.
Hou
,
J.
, and
Zhou
,
C.
,
2023
, “
The Effects of Hub Profile on the Aerodynamics of Integrated Intermediate Turbine Ducts
,”
ASME J. Turbomach.
,
145
(
6
), p.
061012
.
29.
Vera
,
M.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2006
, “The Effect of Mach Number on LP Turbine Wake-Blade Interaction,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
, and
J. P.
Thomas
, eds.,
Springer Netherlands
,
Durham, NC
, pp.
203
216
.
30.
Evans
,
K. R.
, and
Longley
,
J. P.
,
2017
, “
Clocking in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
139
(
10
), p.
101003
.
31.
Reimann
,
D.
,
Bloxham
,
M.
,
Crapo
,
K. L.
,
Pluim
,
J. D.
, and
Bons
,
J. P.
,
2007
, “
Influence of Jet-Induced Transition on Separating Low-Pressure Turbine Boundary Layers
,”
J. Propul. Power
,
23
(
5
), pp.
996
1006
.
32.
Wallin
,
F.
,
Arroyo Osso
,
C.
, and
Johansson
,
T. G.
,
2008
, “
Experimental and Numerical Investigation of an Aggressive Intermediate Turbine Duct: Part 1-Flowfield at Design Inlet Conditions
,”
26th AIAA Applied Aerodynamics Conference
,
Honolulu, HI
, p.
7055
.
33.
Arroyo Osso
,
C.
,
Wallin
,
F.
, and
Johansson
,
T. G.
,
2008,
, “
Experimental and Numerical Investigation of an Aggressive Intermediate Turbine Duct: Part 2-Flowfield Under Off-design Inlet Conditions
,”
26th AIAA Applied Aerodynamics Conference
,
Honolulu, HI
, p.
7056
.
34.
Zhou
,
C.
,
Dong
,
F.
, and
Hou
,
J.
,
2022
, “
The Effects of Incoming Vortex and Wake on the Aerodynamics of an Intermediate Turbine Duct
,”
ASME J. Turbomach.
,
144
(
5
), p.
051012
.
35.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Erlacher
,
G.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2021
, “
A Sector-Cascade Test Rig for Measurements of Heat Transfer in Turbine Center Frames
,”
ASME J. Turbomach.
,
143
(
7
), p.
071015
.
36.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
37.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbul. Combust.
,
77
, pp.
277
303
.
38.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
39.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
40.
Hou
,
J.
, and
Zhou
,
C.
,
2020
, “
Loss Mechanism of Low-Pressure Turbine Secondary Flows Due to Different Incoming Boundary Layers
,”
ASME J. Eng. Gas Turbines Power
,
142
(
10
), p.
101004
.
41.
Zhou
,
K.
, and
Zhou
,
C.
,
2018
, “
Aerodynamic Interaction Between an Incoming Vortex and Tip Leakage Flow in a Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
11
), p.
111004
.
You do not currently have access to this content.