Abstract

Modern multistage axial compressors are designed for high aerodynamic loading and wide range with front stages rotor inlet relative Mach number above one over a large portion of span. Rotor shock waves propagate and reflect in the upstream stator where they provoke extra aerodynamic losses and aeromechanic risks. This paper discusses stator–rotor shock interactions using both steady and unsteady numerical simulations. The computations focus on three different stage designs with the same capacity and total pressure ratio, but different axial gaps and load distribution in stator and rotor. Speedlines from steady and unsteady computations compare the designs, and the detailed flow fields are analyzed at design and close to stall conditions. The steady and unsteady calculations predict similar stage performance, but different stator–rotor loss split. The analyses reveal how the rotor shocks orientation with respect to the upstream stator camber line controls the intensity of shocks interaction with the stator row and its propagation upstream. Finally, the paper indicates the ways to reduce the shock-driven rotor–stator interaction and suggests simple criteria to determine when to switch from steady to unsteady calculations for a reliable transonic stage performance prediction.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Koch
,
C. C.
, and
Smith
,
L. H.
, Jr.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
J. Eng. Power
,
98
(
3
), pp.
411
424
.
2.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
J. Eng. Power
,
103
(
4
), pp.
645
656
.
3.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis of Compressor Cascades
,”
J. Basic Eng.
,
81
(
3
), pp.
387
397
.
4.
Cumpsty
,
N.
,
2004
,
Compressor Aerodynamics
,
Addison Wesley Longman Limited
,
Singapore
.
5.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
6.
Smith
,
L. H.
, Jr.
,
2002
, “
Axial Compressor Aerodesign Evolution at General Electric
,”
ASME J. Turbomach.
,
124
(
3
), pp.
321
330
.
7.
Adkins
,
G. G.
, Jr.
, and
Smith
,
L. H.
, Jr.
,
1982
, “
Spanwise Mixing in Axial-Flow Turbomachines
,”
J. Eng. Power
,
104
(
1
), pp.
97
110
.
8.
Burberi
,
C.
,
Michelassi
,
V.
,
Scotti del Greco
,
A.
,
Lorusso
,
S.
,
Tapinassi
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Validation of Steady and Unsteady CFD Strategies in the Design of Axial Compressors for Gas Turbine Engines
,”
Aerosp. Sci. Technol.
,
107
(
12
), p.
106307
.
9.
Cornelius
,
C.
,
Biesinger
,
T.
,
Galpin
,
P.
, and
Braune
,
A.
,
2014
, “
Experimental and Computational Analysis of a Multistage Axial Compressor Including Stall Prediction by Steady and Transient CFD Methods
,”
ASME J. Turbomach.
,
136
(
6
), p.
061013
.
10.
Wadia
,
A. R.
, and
Beacher
,
B. F.
,
1990
, “
Three-Dimensional Relief in Turbomachinery Blading
,”
ASME J. Turbomach.
,
112
(
4
), pp.
587
596
.
11.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
4
), pp.
671
682
.
12.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Imregun
,
M.
, and
Simpson
,
G.
,
2007
, “
Multiblade Row Forced Response Modeling in Axial-Flow Core Compressors
,”
ASME J. Turbomach.
,
129
(
2
), pp.
412
420
.
13.
Michelassi
,
V.
,
Giangiacomo
,
P.
, and
Martelli
,
F.
,
2001
, “
On the Choice of Variables and Matching Criteria for the Steady Simulation of Transonic Axial Turbine Stages
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
215
(
Part A
), pp.
699
708
.
14.
Rubechini
,
F.
,
Marconcini
,
M.
,
Giovannini
,
M.
,
Bellucci
,
J.
, and
Arnone
,
A.
,
2015
, “
Accounting for Unsteady Interaction in Transonic Stages
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052602
.
15.
Langford
,
M.
,
Breeze-Stringfellow
,
A.
,
Guillot
,
S.
,
Solomon
,
W.
,
Ng
,
W.
, and
Estevadeordal
,
J.
,
2007
, “
Experimental Investigation for the Effects of a Moving Shock Wave on a Compressor Stator Flow
,”
ASME J. Turbomach.
,
129
(
1
), pp.
127
139
.
16.
Arnone
,
A.
, and
Pacciani
,
R.
,
1998
, “
IGV-Rotor Interaction Analysis in a Transonic Compressor Using the Navier-Stokes Equations
,”
ASME J. Turbomach.
,
120
(
1
), pp.
147
155
.
17.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
18.
Michelassi
,
V.
,
1997
, “
Shock-Boundary Layer Interaction and Transition Modeling in Turbomachinery Flows
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
211
(
Part A
), pp.
225
234
.
19.
Ng
,
W. F.
, and
Epstein
,
A. H.
,
1985
, “
Unsteady Losses in Transonic Compressors
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
345
353
.
20.
Mueller
,
L.
,
Mailach
,
R.
,
Vogeler
,
K.
,
Jia
,
H.
, and
Xi
,
G.
,
2010
, “
Unsteady Blade Loading With Clocking in Multistage Axial Compressors, Part 2
,”
AIAA J. Propul. Power
,
26
(
1
), pp.
46
56
.
21.
Manwaring
,
S. R.
, and
Wisler
,
D. C.
,
1993
, “
Unsteady Aerodynamics and Gust Response in Compressors and Turbines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
724
740
.
22.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
23.
Walker
,
G. J.
,
Hughes
,
J. D.
,
Koehler
,
I.
, and
Solomon
,
W. J.
,
1997
, “
The Influence of Wake-Wake Interactions on Loss Fluctuations of a Downstream Axial Compressor Blade row
,”
ASME J. Turbomach.
,
120
(
4
), pp.
695
704
.
24.
Layachi
,
M. Y.
, and
Bolcs
,
A.
,
2001
, “
Effect of the Axial Spacing Between Rotor and Stator With Regard to the Indexing in an Axial Compressor
,”
ASME Turbo Expo
,
New Orleans, LA
,
June 4–7
.
25.
Lurie
,
D. P.
, and
Breeze-Stringfellow
,
A.
,
2015
, “
Evaluation of Experimental Data From a Highly Loaded Transonic Compressor Stage to Determine Loss Sources
,”
ASME Turbo Expo
,
Montreal, Canada
,
June 15–19
.
26.
Cozzi
,
L.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Astrua
,
P.
,
Schneider
,
A.
, and
Silingardi
,
A.
, “
Facing the Challenges in CFD Modelling of Multistage Axial Compressors
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
.
27.
Concepts NREC, Designing Axial Machines With AxCent, 2020.
28.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
"Comparison of the AUSM+-Up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
5
), pp.
705
716
.
29.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME J. Turbomach.
,
135
(
6
), p.
061007
.
30.
Ames Research Center Staff
,
1953
, “
Report 1135—Equations, Tables, and Charts for Compressible Flow
,” NACA, Moffett Field, CA.
31.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.
You do not currently have access to this content.