Abstract

Ceramic matrix composite (CMC) is an enabling material allowing higher turbine inlet temperatures and possibly resulting in better thermal efficiency of gas turbine engines. This is because CMC layers with environmental barrier coating have significantly higher thermal limits (∼1755 K) compared with the more conventional alloyed metallic blades. CMCs possess a complex fabrication process resulting in different geometrical characteristics than metallic blades (e.g., larger trailing edge thickness, large leading-edge curvature, etc.). It is therefore desirable to assess the aerodynamic performance of the CMC blades using experimental and numerical simulations. To investigate, three different CMC blades with varying trailing edge thicknesses were numerically simulated. Both large-eddy simulation with the dynamic subgrid closure as well a recently implemented Reynolds-averaged Navier–Stokes coupled with an intermittency function-based transition model were utilized. Two sets of experimental test points with different Reynolds numbers at a given high-freestream turbulence range (Tu = ∼10–13%) were considered. The predicted pressure loading profiles, total loss distributions, and integrated loss of the three different CMC blades were computed and comparisons against the experimental data are presented herein. It was found that the mixing loss forms a larger proportion of the overall loss as the trailing edge thickness increases.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Giel
,
P.
,
Shyam
,
V.
,
Juangphanich
,
P.
, and
Clark
,
J. P.
,
2020
, “
Effects of Trailing Edge Thickness and Blade Loading Distribution on the Aerodynamic Performance of Simulated CMC Turbine Blades
,”
Proceedings of the ASME Turbo Expo
,
Virtual
, Paper No. GT2020-15802.
2.
Boyle
,
R. J.
,
Parikh
,
A. H.
,
Halbig
,
M. C.
, and
Nagpal
,
V. K.
,
2013
, “
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
,”
Proceedings of the ASME Turbo Expo
,
San Antonio, TX
,
June
, ASME Paper No. GT2013-95104.
3.
Wei
,
L.
,
Ge
,
X.
,
George
,
J.
, and
Durbin
,
P.
,
2017
, “
Modeling of Laminar-Turbulent Transition in Boundary Layer and Rough Turbine Blades
,”
ASME J. Turbomach.
,
139
(
11
), p.
111009
.
4.
Medic
,
G.
, and
Sharma
,
O.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
Proceedings of the ASME Turbo Expo
,
Copenhagen, Denmark
,
June
, Paper No. GT2012-68878.
5.
Bolinches-Gisbert
,
M.
,
Robles
,
D. C.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2020
, “
Prediction of Reynolds Number Effects on Low-Pressure Turbines Using a High-Order ILES Method
,”
ASME J. Turbomach.
,
142
(
3
), p.
031002
.
6.
Ameri
,
A.
,
2018
, “
Implicit-LES Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June
, Paper No. GT2018-77120.
7.
Miki
,
K.
, and
Ameri
,
A.
,
2020
, “
Large-Eddy Simulation of the Variable Speed Power Turbine Cascade With Inflow Turbulence
,”
ASME J. Turbomach.
,
143
(
8
), p.
081006
.
8.
Miki
,
K.
, and
Ameri
,
A.
,
2022
, “
Improved Prediction of Losses With Large Eddy Simulation in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
7
), p.
071002
.
9.
Wang
,
S.
,
Wen
,
F.
,
Zhang
,
S.
,
Zhang
,
S.
, and
Zhou
,
X.
,
2019
, “
Influences of Trailing Boundary Layer Velocity Profiles on Wake Vortex Formation in a High-Subsonic-Turbine Cascade
,”
J. Power Energy
,
233
(
2
), pp.
186
198
.
10.
Lyall
,
M. E.
,
King
,
P.
,
Sondergaard
,
R. S.
, and
Clark
,
J.
,
2012
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low Pressure Turbine Airfoils With Forward and Aft Loading
,”
ASME J. Turbomach.
,
134
(
5
), p.
051035
.
11.
Keadle
,
K.
, and
McQuilling
,
M.
,
2013
, “
Evaluation of RANS Transition Modeling for High Lift LPT Flows at Low Reynolds Number
,”
Proceedings of the ASME Turbo Expo
,
Virtual, San Antonio, TX
,
June
, Paper No. GT2013-95069.
12.
Arko
,
B. M.
, and
McQuilling
,
M.
,
2013
, “
Computational Study of High-Lift Low-Pressure Turbine Cascade Aerodynamics at Low Reynolds Number
,”
J. Propul. Power
,
29
(
2
), pp.
446
459
.
13.
Prakash
,
C.
,
Cherry
,
D. G.
,
Shin
,
H. W.
,
Machnaim
,
J.
,
Dailey
,
L.
,
Beacock
,
R.
,
Halstead
,
D.
, and
Wadia
,
A.
,
2008
, “
Effect of Loading Level and Distribution on LPT Losses
,”
Proceedings of the ASME Turbo Expo
,
Berlin, Germany
,
June
, Paper No. GT2008-50052.
14.
Durbin
,
P. A.
,
1996
, “
On the k-e Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
89
90
.
15.
Vazquez
,
R.
,
Antoranz
,
A.
,
Cadrecha
,
D.
, and
Armananzas
,
L.
,
2016
, “
The Influence of Reynolds Number, Mach Number and Incidence Effects on Loss Production in Low Pressure Turbine Airfoils
,”
ASME Turbo Expo
,
Barcelona, Spain
,
May
, Paper No. GT2006-91121.
16.
Matsunuma
,
T.
,
Abe
,
H.
,
Tsutsui
,
Y.
, and
Murata
,
K.
,
1998
, “
Characteristic of an Annular Turbine Cascade at Low Reynolds Number
,”
Proceedings of the ASME Turbo Expo
,
Stockholm, Sweden
,
June
, Paper No. GT1998-518.
17.
Michalek
,
J.
, and
Straka
,
P.
,
2013
, “
A Comparison of Experimental and Numerical Studies Performed on a Low-Pressure Turbine Blade Cascade at High-Speed Conditions, Low Reynolds Numbers and Various Turbulence Intensities
,”
J. Therm. Sci.
,
22
(
5
), pp.
413
423
.
18.
Thurman
,
D.
,
Flegel
,
A.
, and
Giel
,
P.
,
2014
, “
Inlet Turbulence and Length Scale Measurements in a Large-Scale Transonic Turbine Cascade
,”
Proceedings of the 50th AIAA Joint Propulsion Conference
,
Cleveland, OH
, Paper No. AIAA 2014-3934.
19.
Steinthorsson
,
E.
,
Liou
,
M.-S.
, and
Povinelli
,
L.
,
1993
, “
Development of an Explicit Multiblock/Multigrid Flow Solver for Viscous Flows in Complex Geometries
,”
Proceedings of the 29th Joint Propulsion Conference and Exhibit
,
Monterey, CA
, AIAA Paper No. 1993-2380.
20.
Liou
,
M.-S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
21.
Čada
,
M.
, and
Torrilhon
,
M.
,
2009
, “
Compact Third-Order Limiter Functions for Finite Volume Methods
,”
J. Comput. Phys.
,
228
(
11
), pp.
4118
4145
.
22.
Kim
,
W.-W.
, and
Menon
,
S.
,
1995
, “
A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations
,”
Proceedings of the 33rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
January
, AIAA Paper No. 1995-356.
23.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
24.
Sankaran
,
V.
, and
Menon
,
S.
,
2002
, “
LES of Spray Combustion in Swirling Flows
,”
J. Turbul.
,
3
, p.
N11
.
25.
Kemenov
,
K. A.
, and
Menon
,
S.
,
2006
, “
Explicit Small-Scale Velocity Simulation for High Reynolds Number Turbulent Flows
,”
J. Comput. Phys.
,
220
(
1
), pp.
290
311
.
26.
Miki
,
K.
, and
Menon
,
S.
,
2008
, “
Localized Dynamic Subgrid Closure for Simulation of Magnetohydrodynamic Turbulence
,”
Phys. Plasma
,
15
(
7
), p.
072306
.
27.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer Part I—Model Formulations
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.
28.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
29.
Ameri
,
A.
,
2016
, “
Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows
,” Technical Report, NASA/CR-2016-218962.
30.
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2016
, “
Assessment of Grid Resolution Requirements for Accurate Simulation of Disparate Scales of Turbulent Flow in Low-Pressure Turbines
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June
, Paper No. GT2016-56858.
31.
Ameri
,
A.
,
2014
, “
Simulation of VSPT Experiment Under High and Low Free-Stream Turbulence Conditions
,”
Proceedings of the 50th Joint Propulsion Conference and Exhibit
,
Cleveland, OH
, AIAA Paper No. 2014-3935.
32.
Sandberg
,
R.
,
Pichler
,
R.
, and
Chen
,
L.
,
2012
, “
Assessing the Sensitivity of Turbine Cascade Flow to Inflow Disturbances Using Direct Numerical Simulation
,”
Proceedings of 13th International Symposium for Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachinery (ISUAAAT)
,
Tokyo, Japan
,
Sept. 11–14
.
33.
Mee
,
D. J.
,
Baines
,
N. C.
,
Oldfield
,
M. L. G.
, and
Dickens
,
T. E.
,
1992
, “
An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade
,”
ASME J. Turbomach.
,
114
(
1
), pp.
155
162
.
34.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
35.
Kacker
,
S.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Energy Power
,
104
(1), pp.
111
119
.
36.
Ainley
,
D.
, and
Mathieson
,
G.
,
1951
, “A Method of Performance Estimation for Axial Flow Turbines,” British ARC R. and M., 2974.
37.
Dunham
,
J.
, and
Came
,
P.
,
1979
, “
Improvements to the Ainley/Mathieson Method of Turbine Performance Prediction
,”
J. Eng. Power
,
92
(
3
), pp.
252
256
.
You do not currently have access to this content.