Abstract

While modern engine manufacturers devote significant efforts to the development of reliable and efficient machines, the introduction of novel, optimized components in the hot gas path represents a risky opportunity. Accurate experimental and numerical data are critical to assess the impact of new technologies on the harsh engine environment. The present study addresses the impact of a selection of high-performance rotor blade tips on the aerodynamic and heat flux field of a high-pressure turbine (HPT) stage. A combined numerical and experimental approach is employed to characterize the interaction of the tip leakage flow with the rotor secondary flows and the casing heat transfer mechanisms for each individual tip geometry. The turbine stage is tested at engine-scaled conditions in the rotating turbine facility of the von Karman Institute. In the present study, the turbine rotor is operated in rainbow configuration to allow the simultaneous testing of multiple blade tip geometries. Reynolds-averaged Navier–Stokes (RANS) simulations are employed to predict the aerodynamic and thermal fields of the individual profiles using test-calibrated boundary conditions. Isothermal steady computations are performed at different wall temperatures to compute the adiabatic wall temperature and the heat transfer convective coefficient. Low-order models are used to represent the over-tip thermal field and the driving heat transfer mechanisms. The time-resolved outlet flow is characterized using a vortex tracking technique and high-frequency aerodynamic measurements to identify the rotor secondary flow structures.

References

1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power.
,
22
(
2
), pp.
271
285
.
2.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
(
1
), pp.
97
106
.
3.
Glezer
,
B.
,
2004
, “
Thermal-Mechanical Design Factors Affecting Turbine Blade Tip Clearance
,”
Turbine Blade Tip Design and Tip Clearance Treatment (von Karman Institute for Fluid Dynamics Lecture Series)
,
Arts
,
T.
, ed.
Rhode-St-Genese, von Karman Institute for Fluid Dynamics, Belgium
.
4.
Yamamoto
,
A.
,
1989
, “
Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance
,”
ASME J. Turbomach.
,
111
(
3
), pp.
264
275
.
5.
Heyes
,
F.
,
1992
, “
Jg, Hodson, Hp, and Dailey, Gm, 1992, the Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach
,
114
(
3
), pp.
643
651
.
6.
Bindon
,
J. P.
, and
Morphis
,
G.
,
1992
, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
198
203
.
7.
Krishnababu
,
S.
,
Newton
,
P.
,
Dawes
,
W.
,
Lock
,
G. D.
,
Hodson
,
H.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbinespart I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
8.
Krishnababu
,
S.
,
Dawes
,
W.
,
Hodson
,
H.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbinespart Ii: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.
9.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
10.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
11.
Zhang
,
Q.
,
O Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
12.
Jackson
,
A. J.
,
Wheeler
,
A. P. S.
, and
Ainsworth
,
R. W.
,
2015
, “
An Experimental and Computational Study of Tip Clearance Effects on a Transonic Turbine Stage
,”
Int. J. Heat Fluid Flow
,
56
, pp.
335
343
.
13.
Dunn
,
M. G.
,
1990
, “
Phase and Time-Resolved Measurements of Unsteady Heat Transfer and Pressure in a Full-Stage Rotating Turbine
,”
ASME. J. Turbomach.
,
112
(
3
), pp.
531
538
.
14.
Guenette
,
G.
,
Epstein
,
A.
,
Norton
,
R.
, and
Cao
,
Y.
,
1985
, “
Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,”
21st Joint Propulsion Conference, Monterey, CA
,
July 8–11
, p.
1220
.
15.
Polanka
,
M.
,
Clark
,
J.
,
White
,
A.
,
Meininger
,
M.
, and
Praisner
,
T.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading: Part B Comparisons Between Prediction and Experiment Including Unsteady Effects
,”
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference
,
Atlanta, GA, June 16–19, American Society of Mechanical Engineers Digital Collection
, pp.
691
702
.
16.
Thorpe
,
S.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions.(ii). Time-Resolved Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
945
960
.
17.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, June 8–12
.
18.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
19.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
20.
Shyam
,
V.
, and
Ameri
,
A.
,
2011
, “
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, British Columbia, Canada, June 6–10
, pp.
887
895
.
21.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.-C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.
22.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
5
), p.
051025
.
23.
Pátỳ
,
M.
,
Cernat
,
B. C.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes, Part 2: Tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
24.
Sieverding
,
C.
, and
Arts
,
T.
,
1992
, “
The VKI Compression Tube Annular Cascade Facility Ct3
,”
ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition, Cologne, Germany, June 1–4, American Society of Mechanical Engineers
, p.
V005T16A001
.
25.
Cernat
,
B. C.
,
Pátỳ
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes, Part 1: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
26.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
27.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2014
, “
Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine
,”
ASME J. Turbomach.
,
137
(
2
), p.
021005
.
28.
Denos
,
R.
,
2002
, “
Influence of Temperature Transients and Centrifugal Force on Fast-Response Pressure Transducers
,”
Exp. Fluids
,
33
(
2
), pp.
256
264
.
29.
Iliopoulou
,
V.
,
Denos
,
R.
,
Billiard
,
N.
, and
Arts
,
T.
,
2004
, “
Time-Averaged and Time-Resolved Heat Flux Measurements on a Turbine Stator Blade Using Two-Layered Thin-Film Gauges
,”
ASME J. Turbomach.
,
126
(
4
), pp.
570
577
.
30.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), p.
1036
.
31.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley & Sons
,
Hoboken, NJ
.
32.
Paty
,
M.
, and
Lavagnoli
,
S.
,
2018
, “
Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
,”
2018 Joint Propulsion Conference, Cincinnati, OH
,
July 9–11
, p.
4435
.
33.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2016
, “
Analysis of the Heat Transfer Driving Parameters in Tight Rotor Blade Tip Clearances
,”
ASME J. Heat. Transfer.
,
138
(
1
), p.
011705
.
34.
Pátỳ
,
M.
, and
Lavagnoli
,
S.
,
2020
, “
A Novel Vortex Identification Technique Applied to the 3D Flow Field of a High-Pressure Turbine
,”
ASME. J. Turbomach.
,
142
(
3
), p.
031004
.
35.
Pinilla
,
V.
,
Solano
,
J.
,
Paniagua
,
G.
, and
Anthony
,
R.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer.
,
134
(
9
), p.
091601
.
36.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2007
, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,”
ASME J. Turbomach.
,
129
(
1
), pp.
84
91
.
37.
Perry
,
K. P.
,
1954
, “
Heat Transfer by Convection From a Hot Gas Jet to a Plane Surface
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
775
784
.
38.
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2008
, “
The Effects of Blade Passing on the Heat Transfer Coefficient of the Overtip Casing in a Ttransonic Turbine Stage
,”
ASME J. Turbomach.
,
130
(
4
), p.
041009
.
You do not currently have access to this content.