Abstract

Purge flows are prevalent in modern gas turbine design, allowing for increased turbine entry temperatures. The purge flow passes through a rim seal and interacts with the mainstream flow, modifying the blade secondary flow structures and reducing stage efficiency. These structures may be controlled using end wall contouring (EWC), though experimental demonstration of their benefit is seldom reported in the literature. The optically accessible turbine at the University of Bath was designed to directly measure and visualize the flow field within the blade passage for a rotor with EWC. The single-stage turbine enables phase-locked flow field measurements with volumetric particle image velocimetry (PIV). Purge flow was supplied to investigate a range of operating conditions in which the secondary flow structures were modified. The modular turbine rotor allowed for expedient change of a bladed ring, or bling, featuring non-axisymmetric EWC. The identified secondary flow structures were the pressure-side leg of the horse shoe vortex (PS-HSV) and an egress vortex (EV) of concurrent rotational direction. An increase in purge flowrate monotonically shifted the EV toward the suction-side (SS) of the adjacent blade. The migration of the PS-HSV toward the SS caused the two aforementioned vortices to merge. The EWC rotor design included a leading-edge (LE) feature to alter the PS-HSV and a trough to guide the EV low spanwise in the passage and maintain displacement from the adjacent suction-side. The EWC rotor was found to be effective at altering the formation and positioning of the secondary flow structures at a range of purge flow conditions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
3.
Mesny
,
A. W.
,
Glozier
,
M. A.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Li
,
Y. S.
,
Cleaver
,
D. J.
, and
Sangan
,
C. M.
,
2021
, “
Vortex Tracking of Purge-Mainstream Interactions in a Rotating Turbine Stage
,”
ASME J. Turbomach.
,
144
(
4
), p.
041011
.
4.
Rose
,
M. G.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine
,”
Proceedings of the ASME 1994 International Gas Turbine & Aeroengine Congress & Exposition. Volume 1: Turbomachinery
,
The Hague, Netherlands
,
June 13–16
, ASME Paper No. 94-GT-249, p.
V001T01A090
.
5.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
, and
Rose
,
M. G.
,
1998
, “
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Turbomachinery
,
Stockholm, Sweden
,
June 2–5
, ASME Paper No. 98-GT-525, p.
V001T01A130
.
6.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
1999
, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
7.
Bergh
,
J.
,
Snedden
,
G.
, and
Reddy
,
D.
,
2020
, “
Development of an Automated Non-Axisymmetric Endwall Contour Design System for the Rotor of a 1-Stage Research Turbine—Part 1: System Design
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
234
(
5
), pp.
565
581
.
8.
Bergh
,
J.
,
Snedden
,
G.
, and
Reddy
,
D.
,
2020
, “
Development of an Automated Non-Axisymmetric Endwall Contour Design System for the Rotor of a 1-Stage Research Turbine—Part 2 Computed and Experimental Results
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
234
(
8
), pp.
1084
1100
.
9.
Bergh
,
J.
,
Snedden
,
G.
, and
Dunn
,
D.
,
2020
, “
Optimization of Non-Axisymmetric Endwall Contours for the Rotor of a Low Speed, 1 1/2 Stage Research Turbine with Unshrouded Blades—Optimization and Experimental Validation
,”
ASME J. Turbomach.
,
142
(
4
), pp.
1
15
.
10.
Jones
,
R. R.
,
Pountney
,
O. J.
,
Cleton
,
B. L.
,
Wood
,
L. E.
,
Deneys J. Schreiner
,
B.
,
Carvalho Figueiredo
,
A. J.
,
Scobie
,
J. A.
,
Cleaver
,
D. J.
,
Lock
,
G. D.
, and
Sangan
,
C. M.
,
2019
, “
An Advanced Single-Stage Turbine Facility for Investigating Nonaxisymmetric Contoured Endwalls in the Presence of Purge Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121008
.
11.
Schneider
,
C. M.
,
Schrack
,
D.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Guendogdu
,
Y.
, and
Engel
,
K.
,
2014
, “
On the Interaction of Streamwise Vorticity with a Rotating Turbine Blade
,”
10th Eur. Conf. Turbomach. Fluid Dyn. Thermodyn.
,
Lappeenranta, Finland
,
April 15–19
, ETC Paper No. ETC2013-022, pp.
24
35
.
12.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
13.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
14.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
15.
Barsi
,
D.
,
Lengani
,
D.
,
Simoni
,
D.
,
Venturino
,
G.
,
Bertini
,
F.
,
Giovannini
,
M.
, and
Rubechini
,
F.
,
2022
, “
Analysis of the Loss Production Mechanism Due to Cavity–Main Flow Interaction in a Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
144
(
9
), p.
091004
.
16.
Coull
,
J. D.
, and
Clark
,
C. J.
,
2022
, “
The Effect of Inlet Conditions on Turbine Endwall Loss
,”
ASME J. Turbomach.
,
144
(
10
), p.
101011
.
17.
Chilla
,
M.
,
Hodson
,
H. P.
,
Pullan
,
G.
, and
Newman
,
D.
,
2016
, “
High-Pressure Turbine Rim Seal Design for Increased Efficiency
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Seoul, South Korea
,
June 13–17
, ASME Paper No. GT2016-57495, p.
V02BT38A046
.
18.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME. J. Turbomach.
,
133
(
2
), p.
021011
.
19.
Regina
,
K.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Lohaus
,
A.
,
Voelker
,
S.
, and
auf dem Kampe
,
T.
,
2014
, “
Aerodynamic Robustness of End Wall Contouring Against Rim Seal Purge Flow
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2C: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
. ASME Paper No. GT2014-26007, p.
V02CT38A027
.
20.
Hänni
,
D. D.
,
Schädler
,
R.
,
Abhari
,
R. S.
,
Kalfas
,
A. I.
,
Schmid
,
G.
,
Lutum
,
E.
, and
Lecoq
,
N.
,
2019
, “
Purge Flow Effects on Rotor Hub Endwall Heat Transfer With Extended Endwall Contouring Into the Disk Cavity
,”
J. Glob. Power Propuls. Soc.
,
3
, pp.
555
568
.
21.
Hu
,
S.
, and
Luo
,
H.
,
2014
, “
Endwall Contouring Optimization in a High Pressure Turbine Vane With Consideration of Rim Seal Flow
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2C: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
.
22.
Schäflein
,
L.
,
Janssen
,
J.
,
Brandies
,
H.
,
Jeschke
,
P.
, and
Behre
,
S.
,
2023
, “
Influence of Purge Flow Injection on the Performance of an Axial Turbine With Three-Dimensional Airfoils and Non-Axisymmetric Endwall Contouring
,”
ASME. J. Turbomach.
,
145
(
6
), p.
061004
.
23.
Schreiner
,
B. D. J.
,
Wilson
,
M.
,
Li
,
Y. S.
, and
Sangan
,
C. M.
,
2019
, “
Design of Contoured Turbine Endwalls in the Presence of Purge Flow: A Feature-Based Approach
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90443, p.
V02BT40A007
.
24.
Boomsma
,
A.
, and
Troolin
,
D.
,
2018
, “
Time-Resolved Particle Image Identification and Reconstruction for Volumetric 4D-PTV
,”
Proceedings of the 19th International Symposium on the Application of Laser Imaging Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 16–19
.
25.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry : A Practical Guide
, 3rd ed.,
Springer International
,
Cham, Switzerland
.
26.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.
27.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program in Centre for Turbulence Research
,
Stanford, CA
,
July 13–Aug. 7
, pp.
193
208
.
You do not currently have access to this content.