Abstract

The flow in a 1.5-stage axial turbine is investigated by large-eddy simulations. The focus is on the ingress in the downstream wheel space. Two setups are considered. In the first, the full 360 deg annulus is included on a computational mesh with approx. 1 billion mesh cells. The second setup includes a single blade passage in a 22.5 deg segment. The computational mesh has approx. 75 million mesh cells accordingly. The flow fields in the downstream wheel space differ strongly. In the 22.5 deg setup, the disk pumping effect is much more pronounced than in the 360 deg setup and the fluid bulk rotates in the direction of the rotor rotation. In the 360 deg setup, the fluid rotates in the opposite rotor direction and the velocities feature a deflection at intermediate radii. The differences are caused by the instantaneous flow fields. In the upstream wheel space of the 360 deg setup, two large-scale rotating vortex structures are predicted, which create four pressure peaks that propagate downstream. They interact with the second stator and create a rotating flow structure in the downstream wheel space, which generates alternating ingress and egress. Due to their spatial extent, none of these structures can exist in the 22.5 deg setup. The results show that for the investigated combination of turbine geometry and operating condition, the analysis of the downstream wheel space requires the detailed prediction of the unsteady flow phenomena in the upstream wheel space, i.e., it cannot be performed using the 22.5 deg setup.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
30th Joint Propulsion Conference and Exhibit
,
Indianapolis, IN
, Paper No. AIAA 1994-2703.
2.
Graikos
,
D.
,
Tang
,
H.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2022
, “
A New Interpretation of Hot Gas Ingress Through Turbine Rim Seals Influenced by Mainstream Annulus Swirl
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111005
.
3.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME Turbo Expo 2009
,
Orlando, FL
, pp.
1263
1272
, Paper No. GT2009-59965.
4.
Laskowski
,
G. M.
,
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Ledezma
,
G.
,
Kapetanovic
,
S.
,
Itzel
,
G. M.
,
Sullivan
,
M. A.
, and
Farrell
,
T. R.
,
2011
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part II: CFD Simulations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041020
.
5.
Horwood
,
J.
,
Hualca
,
F.
,
Scobie
,
J.
,
Wilson
,
M.
,
Sangan
,
C.
, and
Lock
,
G.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.
6.
Horwood
,
J.
,
Hualca
,
F.
,
Wilson
,
M.
,
Scobie
,
J.
,
Sangan
,
C.
,
Lock
,
G.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.
7.
Gao
,
F.
,
Chew
,
J.
,
Beard
,
P.
,
Amirante
,
D.
, and
Hills
,
N.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.
8.
Palermo
,
D.
,
Gao
,
F.
,
Amirante
,
D.
,
Chew
,
J.
,
Bru Revert
,
A.
, and
Beard
,
P.
,
2021
, “
Wall-Modelled Large Eddy Simulations of Axial Turbine Rim Sealing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061025
.
9.
Cao
,
C.
,
Chew
,
J.
,
Millington
,
P.
, and
Hogg
,
S.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
10.
Hösgen
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2024
, “
Analysis of Single Blade Passage and Full Circumference Large-Eddy Simulations of Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
146
(
4
), p.
041002
.
11.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME Turbo Expo 2004
,
Vienna, Austria
, pp.
431
440
, Paper No. GT2004-53829.
12.
Pehle
,
L.
,
Stotz
,
S.
, and
Wirsum
,
M.
,
2023
, “
Unsteady Flow Phenomena in a 1.5-Stage Test Turbine With an Axial Rim Seal
,”
ASME Turbo Expo 2023
,
Boston, MA
, p. V07BT14A017, Paper No. GT2023-103434
13.
Patinios
,
M.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J.
, and
Lock
,
G.
,
2016
, “
Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012603
.
14.
Cheng
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Investigations on the Sealing Effectiveness and Unsteady Flow Field of 1.5-Stage Turbine Rim Seal
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081003
.
15.
Graikos
,
D.
,
Carnevale
,
M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2021
, “
Influence of Flow Coefficient on Ingress Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111010
.
16.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
17.
Schädler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2016
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.
18.
Schäflein
,
L.
,
Janssen
,
J.
,
Brandies
,
H.
,
Jeschke
,
P.
, and
Behre
,
S.
,
2022
, “
Influence of Purge Flow Injection on the Performance of an Axial Turbine With Three-Dimensional Airfoils and Non-axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
145
(
6
), p.
061004
.
19.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2019
, “
Large-Eddy Simulation of the Unsteady Full 3d Rim Seal Flow in a One-Stage Axial-Flow Turbine
,”
Flow Turbulence Combus.
,
102
(
1
), pp.
189
220
.
20.
Hösgen
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2020
, “
Large-Eddy Simulations of Rim Seal Flow in a One-Stage Axial Turbine
,”
J. Glob. Power Propul. Soc.
,
4
, pp.
309
321
.
21.
Schneiders
,
L.
,
Günther
,
C.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2016
, “
An Efficient Conservative Cut-Cell Method for Rigid Bodies Interacting With Viscous Compressible Flows
,”
J. Comput. Phys.
,
311
, pp.
62
86
.
22.
Günther
,
C.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2014
, “
A Flexible Level-Set Approach for Tracking Multiple Interacting Interfaces in Embedded Boundary Methods
,”
Comput. Fluids
,
102
, pp.
182
202
.
23.
Niemöller
,
A.
,
Schlottke-Lakemper
,
M.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2020
, “
Dynamic Load Balancing for Direct-Coupled Multiphysics Simulations
,”
Comput. Fluids
,
199
.
24.
Orsini
,
L.
,
Picchi
,
A.
,
Facchini
,
B.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2023
, “
Impact of the Purge Flow Density Ratio on the Rim Sealing Effectiveness in Hot Gas Ingestion Measurements
,”
ASME J. Turbomach.
,
146
(
2
), p.
021002
.
25.
Beard
,
P.
,
Gao
,
F.
,
Chana
,
K.
, and
Chew
,
J.
,
2016
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
26.
Poinsot
,
T.
, and
Lelef
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
27.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program
,
Center for Turbulence Research, Stanford University, Stanford, CA
, pp.
193
208
.
28.
Rudzinski
,
B.
,
2009
, “
Experimentelle Untersuchung des Heißgaseinzuges in die Rotor-Stator-Zwischenräume einer eineinhalbstufigen Turbine für unterschiedliche Dichtkonfigurationen
,” Dr. Hut, München 2010 Dissertation,
RWTH Aachen University
,
Aachen
.
29.
Jovanovic
,
M.
,
Schmid
,
P.
, and
Nichols
,
J.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluid
,
26
(
2
).
You do not currently have access to this content.