Abstract

Thermal management of turbine airfoils is a critical design consideration, but the impact of unsteadiness on heat transfer of attached flow regions has received less attention in the literature. When turbine surfaces are subjected to unsteady zero-mean flow fluctuations, either naturally or artificially, the mean velocity around them is modified due to a nonlinear interaction of fluctuations, known as streaming. In this numerical study, we examine the effect of streaming on heat transfer and skin friction in a simplified model of the flow over a turbine blade. Both heat transfer and skin friction modifications were found to strongly depend on the amplitude and wave speed of the unsteady flow perturbations. Over a wide range of disturbance parameters, skin friction modification was negligible, but a significant effect on heat transfer due to streaming was identified. Moreover, the impact of favorable pressure gradients, which are typical for turbine airfoils, on the streaming phenomena was also considered, and it was found that flow regions of zero-pressure gradient produced the strongest amplification of heat transfer, although the effect of the pressure gradient varied with Strouhal number. Due to its significant effect on wall heat transfer, the streaming phenomenon should be taken into account during the design and measurement of the thermal properties of unsteady systems.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME. J. Turbomach.
,
123
(
4
), pp.
637
686
.
2.
Han
,
J.-C.
,
Zhang
,
L.
, and
Ou
,
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME. J. Heat. Transfer-Trans. ASME
,
115
(
4
), pp.
904
911
.
3.
Wright
,
L.
, and
Schobeiri
,
M. T.
,
1999
, “
The Effect of Periodic Unsteady Flow on Aerodynamics and Heat Transfer on a Curved Surface
,”
ASME. J. Heat. Transfer-Trans. ASME
,
121
(
1
), pp.
22
33
.
4.
Schobeiri
,
M. T.
,
Öztürk
,
B.
,
Kegalj
,
M.
, and
Bensing
,
D.
,
2008
, “
On the Physics of Heat Transfer and Aerodynamic Behavior of Separated Flow Along a Highly Loaded Low Pressure Turbine Blade Under Periodic Unsteady Wake Flow and Varying of Turbulence Intensity
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
130
(
5
), p.
051703
.
5.
Sigurdson
,
L. W.
, and
Roshko
,
A.
,
1988
, “
The Structure and Control of a Turbulent Reattaching Flow
,”
Turbulence Manage. Relaminarisation
,
298
, pp.
497
514
.
6.
Cukurel
,
B.
,
Selcan
,
C.
, and
Stratmann
,
M.
,
2015
, “
Convective Heat Transfer Investigation of Acoustically Excited Flow Over an Isolated Rib Obstacle
,”
Int. J. Heat. Mass. Transfer.
,
91
, pp.
848
860
.
7.
Agarwal
,
T.
,
Stratmann
,
M.
,
Julius
,
S.
, and
Cukurel
,
B.
,
2021
, “
Exploring Applicability of Acoustic Heat Transfer Enhancement Across Various Perturbation Elements
,”
ASME J. Turbomach.
,
143
(
3
), p.
031001
.
8.
Schubauer
,
G. B.
, and
Skramstad
,
H. K.
,
1947
, “
Laminar Boundary-Layer Oscillations and Stability of Laminar Flow
,”
ASME. J. Aeronaut. Sci.
,
14
(
2
), pp.
69
78
.
9.
Agarwal
,
T.
,
Cukurel
,
B.
, and
Jacobi
,
I.
,
2022
, “
Localized Drag Modification in a Laminar Boundary Layer Subject to Free-Stream Travelling Waves via Critical and Stokes Layer Interactions
,”
J. Fluid. Mech.
,
937
, p.
A10
.
10.
Lin
,
C.
,
1957
, “
Motion in the Boundary Layer With a Rapidly Oscillating External Flow
,”
9th International Congress of Applied Mechanics
,
Brussels, Belgium
,
Sept. 5–13
.
11.
von Karman
,
T.
, and
Millikan
,
C.
,
1934
,
On the Theory of Laminar Boundary Layers Involving Separation, NASA Technical Report No NACA-TR-504, USA
.
12.
Howarth
,
L.
, and
Bairstow
,
L.
,
1938
, “
On the Solution of the Laminar Boundary Layer Equations.
,”
Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci.
,
164
(
919
), pp.
547
579
.
13.
Telionis
,
D. P.
,
1981
,
Unsteady Viscous Flow
,
Springer-Verlag
,
New York
.
14.
Sommer
,
T. P.
,
So
,
R. M. C.
, and
Zhang
,
H. S.
,
1994
, “
Heat Transfer Modeling and the Assumption of Zero Wall Temperature Fluctuations
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
116
(
4
), pp.
855
863
.
15.
Tiselj
,
I.
,
Pogrebnyak
,
E.
,
Li
,
C.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
,
2001
, “
Effect of Wall Boundary Condition on Scalar Transfer in a Fully Developed Turbulent Flume
,”
Phys. Fluids.
,
13
(
4
), pp.
1028
1039
.
16.
2015
,
The Jet Engine
,
Wiley
,
Manhattan, NY
.
17.
Acharya
,
S.
, and
Mahmood
,
G.
,
2006
, “
Turbine Blade Aerodynamics
,”
The Gas Turbine Handbook
,
Vol. 1
,
NETL
,
USA
, pp.
364
380
.
18.
Green
,
R. B.
,
Galbraith
,
R. A. M.
, and
Niven
,
A.
,
1992
, “
Measurements of the Dynamic Stall Vortex Convection Speed
,”
Aeronaut. J. (1968)
,
96
(
958
), pp.
319
325
.
19.
Lin
,
C.
, and
Hsieh
,
S.-C.
,
2003
, “
Convection Velocity of Vortex Structures in the Near Wake of a Circular Cylinder
,”
J. Eng. Mech.
,
129
(
10
), pp.
1108
1118
.
20.
Del Álamo
,
J. C.
, and
Jimenez
,
J.
,
2009
, “
Estimation of Turbulent Convection Velocities and Corrections to Taylor’s Approximation
,”
J. Fluid. Mech.
,
640
, pp.
5
26
.
21.
Sieverding
,
C. H.
,
Ottolia
,
D.
,
Bagnera
,
C.
,
Comadoro
,
A.
,
Brouckaert
,
J. -F.
, and
Desse
,
J.-M.
,
2004
, “
Unsteady Turbine Blade Wake Characteristics
,”
ASME J. Turbomach.
,
126
(
4
), pp.
551
559
.
22.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power.
,
23
(
1
), pp.
227
234
.
23.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid. Mech.
,
41
(
2
), pp.
241
258
.
24.
Jacobi
,
I.
, and
McKeon
,
B. J.
,
2011
, “
Dynamic Roughness Perturbation of a Turbulent Boundary Layer
,”
J. Fluid. Mech.
,
688
, pp.
258
296
.
25.
McKeon
,
B. J.
, and
Sharma
,
A. S.
,
2010
, “
A Critical-Layer Framework for Turbulent Pipe Flow
,”
J. Fluid. Mech.
,
658
, pp.
336
382
.
26.
Min
,
T.
,
Kang
,
S. M.
,
Speyer
,
J. L.
, and
Kim
,
J.
,
2006
, “
Sustained Sub-laminar Drag in a Fully Developed Channel Flow
,”
J. Fluid. Mech.
,
558
, pp.
309
318
.
27.
Rahbari
,
I.
, and
Paniagua
,
G.
,
2020
, “
Acoustic Streaming in Turbulent Compressible Channel Flow for Heat Transfer Enhancement
,”
J. Fluid. Mech.
,
889
, p.
A2
.
28.
Rahbari
,
I.
,
Cukurel
,
B.
, and
Paniagua
,
G.
,
2021
, “
Acoustic Pulsation for Heat Transfer Abatement in Supersonic Channel Flow
,”
Phys. Fluids.
,
33
(
3
), p.
035104
.
29.
Dring
,
R. P.
,
Blair
,
M.
,
Joslyn
,
H. D.
,
Power
,
G.
, and
Verdon
,
J.
,
1987
, “
The Effects of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model—Volume 1
,”
Technical Report No. E-3536
,
NASA
.
30.
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1991
, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME J. Turbomach.
,
113
(
3
), pp.
412
418
.
31.
Fluent ANSYS
,
2011
, “ANSYS Fluent Theory Guide,”
ANSYS Inc.
,
Canonsburg, PA
, pp.
724
746
.
32.
Hill
,
P. G.
, and
Stenning
,
A. H.
,
1960
, “
Laminar Boundary Layers in Oscillatory Flow
,”
J. Basic. Eng.
,
82
(
3
), pp.
593
607
.
33.
Patel
,
M. H.
,
1975
, “
On Laminar Boundary Layers in Oscillatory Flow
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
347
(
1648
), pp.
99
123
.
34.
Biles
,
D.
,
2019
, “
Experimental Investigations of Thermal Pulsatile Boundary Layer Flow
,”
Ph.D. Dissertation
,
University of New Hampshire
,
Durham, NH
.
35.
Kaithakkal
,
A. J.
,
Kametani
,
Y.
, and
Hasegawa
,
Y.
,
2021
, “
Dissimilar Heat Transfer Enhancement in a Fully Developed Laminar Channel Flow Subjected to a Traveling Wave-Like Wall Blowing and Suction
,”
Int. J. Heat. Mass. Transfer.
,
164
, pp.
120485
.
You do not currently have access to this content.