Abstract

In recent years, in order to achieve higher performance, the number of design variables used in the aerodynamic optimization of turbomachinery (based on surrogate models) has increased significantly. However, the increase in the design dimensions brings the problems of sparse distribution of training samples and numerous inaccurate local optima to the surrogate model, making it difficult to obtain an accurate Pareto front in high-dimensional aerodynamic optimization. To solve this, adaptive batch sampling strategy (ABSS) is proposed in this paper. By searching numerous local optimum points with large prediction errors in the surrogate model, ABSS can provide batches of valuable samples for each iterative update of the model. Compared with the current model update strategy based on the best point, which requires hundreds or thousands of iterative model updates, ABSS only needs to go through a few model updates to make the predicted Pareto front close to the real one. ABSS not only greatly shortens the whole optimization time, but also makes it easier to jump out of the local optima for the optimization. Based on this, a 114-dimensional aerodynamic optimization of the full three-dimensional centrifugal impeller (including arbitrary blade surfaces, independent splitter surfaces, and non-axisymmetric hub surfaces) is carried out. The results show that, compared with the baseline impeller, the design point isentropic stage efficiency of the optimal impeller is increased by 2.1%, the design point pressure ratio is well controlled to 1.84, and the choke margin is increased by 9.2%. This research breaks through the largest number of variables in the current centrifugal impeller optimization, proposes the optimization methods of the full-3D centrifugal impeller, and also provides a reference for the future high-dimensional aerodynamic optimization of turbomachinery.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Cosentino
,
R.
,
2001
, “
Expert System for Radial Impeller Optimisation
,”
Turbomachinery: Fluid Dynamics and Thermodynamics
,
Florence, Italy
, Vol. 4, Servizi Grafici Editoriali, pp.
481
490
.
2.
Braembussche
,
R. A. V. D..
,
2006
, “
Optimization of Radial Impeller Geometry
,”
Des. Anal. High Speed Pumps
,
143
(
1
), pp.
1
28
.
3.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Ermini
,
M.
, and
Baldassarre
,
L.
,
2006
, “
Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique
,”
ASME J. Turbomach.
,
128
(
4
), pp.
786
797
.
4.
Ibaraki
,
S.
,
Tomita
,
I. S. A. O..
, and
Sugimoto
,
K.
,
2015
, “
Aerodynamic Design Optimization of Centrifugal Compressor Impeller Based on Genetic Algorithm and Artificial Neural Network
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
52
(
1
), pp.
65
77
.
5.
Ma
,
Y.
,
Engeda
,
A.
,
Cave
,
M.
, and
Liberti
,
J. D.
,
2010
, “
Improved Centrifugal Compressor Impeller Optimization With a Radial Basis Function Network and Principle Component Analysis
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
(
4
), pp.
935
945
.
6.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
7.
Witherden
,
F. D.
, and
Jameson
,
A.
,
2017
, “
Future Directions in Computational Fluid Dynamics
,”
23rd AIAA Computational Fluid Dynamics Conference
,
Denver, CO
,
June 5–9
, Vol. 1, AIAA, pp.
1
16
.
8.
Nielsen
,
E. J.
, and
Diskin
,
B.
,
2017
, “
High-Performance Aerodynamic Computations for Aerospace Applications
,”
Parallel Comput.
,
64
(
1
), pp.
20
32
.
9.
Elfert
,
M.
,
Weber
,
A.
,
Wittrock
,
D.
,
Peters
,
A.
,
Voss
,
C.
, and
Nicke
,
E.
,
2017
, “
Experimental and Numerical Verification of an Optimization of a Fast Rotating High-Performance Radial Compressor Impeller
,”
ASME J. Turbomach.
,
139
(
10
), p.
101007
.
10.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
.
11.
Moussavi Torshizi
,
S. A.
,
Hajilouy Benisi
,
A.
, and
Durali
,
M.
,
2017
, “
Multilevel Optimization of Profile of Splitter Blades in the Impeller of a Centrifugal Compressor
,”
Sci. Iranica
,
24
(
2
), pp.
707
714
.
12.
Ji
,
C.
,
Wang
,
Z.
,
Tang
,
Y.
, and
Xi
,
G.
,
2021
, “
A Flow Information-Based Prediction Model Applied to the Nonaxisymmetric Hub Optimization of a Centrifugal Impeller
,”
ASME J. Mech. Des.
,
143
(
10
), p.
103502
.
13.
Hah
,
C.
, and
Krain
,
H.
,
1990
, “
Secondary Flows and Vortex Motion in a High-Efficiency Backswept Impeller at Design and Off-design Conditions
,”
ASME J. Turbomach.
,
112
(
1
), pp.
7
13
.
14.
Krain
,
H.
, and
Hoffmann
,
W.
,
1989
, “
Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations
,”
Proceedings of the ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition
,
Toronto, Ontario, Canada
,
June 4–8
, Vol. 1, ASME, pp.
1
8
.
15.
Ji
,
C.
,
Wang
,
Z.
, and
Xi
,
G.
,
2022
, “
Computer 3D Vision-Aided Full-3D Optimization of a Centrifugal Impeller
,”
ASME J. Turbomach.
,
144
(
9
), p.
091011
.
16.
Cicconi
,
P.
,
Landi
,
D.
, and
Germani
,
M.
,
2013
, “
A Virtual Prototyping Approach Based on DOE Analysis to Support the Design of a Centrifugal Impeller
,”
Smart Product Engineering: Proceedings of the 23rd CIRP Design Conference
,
Bochum, Germany
, Vol. 11, Springer, pp.
431
440
.
17.
Cicconi
,
P.
,
Landi
,
D.
, and
Germani
,
M.
,
2014
, “
A Modular Optimization Method Based on a Multi-DOE Approach Proposed for a Centrifugal Impeller
,”
Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
, Vol. 11, ASME, pp.
1
9
.
18.
Pei
,
J.
,
Yin
,
T.
,
Yuan
,
S.
,
Wang
,
W.
, and
Wang
,
J.
,
2017
, “
Cavitation Optimization for a Centrifugal Pump Impeller by Using Orthogonal Design of Experiment
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
103
109
.
19.
Kim
,
S.
,
Choi
,
Y.-S.
,
Lee
,
K.-Y.
, and
Yoon
,
J.-Y.
,
2009
, “
Design Optimization of Centrifugal Pump Impellers in a Fixed Meridional Geometry Using DOE
,”
Int. J. Fluid Mach. Syst.
,
2
(
2
), pp.
172
178
.
20.
Kim
,
W.
,
Jeon
,
W.-H.
,
Hur
,
N.
,
Hyun
,
J.-J.
,
Lim
,
C.-K.
, and
Lee
,
S.-H.
,
2011
, “
Development of a Low-Noise Cooling Fan for an Alternator Using Numerical and Doe Methods
,”
Int. J. Automotive Technol.
,
12
(
2
), pp.
307
314
.
21.
Hou
,
H.
,
Zhang
,
Y.
,
Zhou
,
X.
,
Zuo
,
Z.
, and
Chen
,
H.
,
2019
, “
Optimal Hydraulic Design of an Ultra-Low Specific Speed Centrifugal Pump Based on the Local Entropy Production Theory
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
233
(
6
), pp.
715
726
.
22.
Carpenter
,
W. C.
,
1993
, Effect of Design Selection on Response Surface Performance, Technical Report NAG1-1378, NASA, Langley Research Center.
23.
Mitchell
,
T. J.
,
2000
, “
An Algorithm for the Construction of “D-Optimal” Experimental Designs
,”
Technometrics
,
42
(
1
), pp.
48
54
.
24.
Kang
,
H.-S.
, and
Kim
,
Y.-J.
,
2016
, “
Optimal Design of Impeller for Centrifugal Compressor Under the Influence of One-Way Fluid-Structure Interaction
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
3953
3959
.
25.
Yi
,
W.
,
Huang
,
H.
, and
Han
,
W.
,
2006
, “
Design Optimization of Transonic Compressor Rotor Using CFD and Genetic Algorithm
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
, Vol. 6, ASME, pp.
1191
1198
.
26.
Kim
,
J.-H.
,
Choi
,
J.-H.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Multi-objective Optimization of a Centrifugal Compressor Impeller Through Evolutionary Algorithms
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
224
(
5
), pp.
711
721
.
27.
Pasquale
,
D.
,
Persico
,
G.
, and
Rebay
,
S.
,
2014
, “
Optimization of Turbomachinery Flow Surfaces Applying a CFD-Based Throughflow Method
,”
ASME J. Turbomach.
,
136
(
3
), p.
031013
.
28.
Sobol’
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
,
7
(
4
), pp.
784
802
.
29.
Li
,
X.
,
Zhao
,
Y.
, and
Liu
,
Z.
,
2019
, “
A Novel Global Optimization Algorithm and Data-Mining Methods for Turbomachinery Design
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
581
612
.
30.
Krain
,
H.
,
Hoffmann
,
B.
, and
Pak
,
H.
,
1995
, “
Aerodynamics of a Centrifugal Compressor Impeller with Transonic Inlet Conditions
,”
Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
, June 5–8, Vol. 1, AIAA, pp.
1
9
.
31.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
,
Reno, NV, Jan. 9–12
, Vol. 1, pp. AIAA, pp.
366
377
.
32.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
73
.
33.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T..
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.