Abstract

This paper analyzes the effect of the inlet end-wall boundary layer on the secondary flow of a low pressure turbine airfoil cascade at Reynolds number 2 × 105 using RANS and implicit large-eddy simulations (LES). The results are compared against experimental data obtained at two low-speed linear cascade facilities, one located at the Whittle Laboratory of the University of Cambridge and the other at the Polytechnic University of Madrid. The RANS turbulence model is the kωγReθt and no sub-grid scale model has been used in the LES. An unstructured mesh of hexahedra and prisms is used, with high order elements used in the boundary layer region to better describe the airfoil shape in the LES. Two inlet end-wall boundary layers that produce different secondary flow patterns are analyzed: a laminar thin velocity profile and a turbulent thick velocity profile with several inlet turbulent intensities. The agreement between LES numerical predictions and experimental measurements of the position and intensity of the secondary vortices is very good for both cases. RANS simulations are much cheaper in terms of computational cost and reasonably predict most of the flow features, except when the inlet turbulence is low and turbulent transition prediction becomes critical. The effect of the inlet velocity profiles and inlet turbulence on the secondary flow structure is quite pronounced. The velocity profile thickness determines the spanwise penetration of the passage vortex, and different inlet turbulence intensities modify its mixing. Higher inlet turbulence intensities lead to a decrease of the secondary losses due to the passage vortex and an increase of end-wall losses.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas. Turbines Power
,
107
(
2
), pp.
248
257
.
3.
Langston
,
L.
,
2001
, “
Secondary Flows in Axial Turbines – A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
4.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.
5.
Marsh
,
H.
,
1976
, “Secondary Flow in Cascades,” The Effect of Compressibility, Aeronautical Research Council R&M, No. 3778.
6.
Vera
,
M.
,
Hodson
,
H.
, and
Vázquez
,
R.
,
2008
, “
Endwall Boundary Layer Development in an Engine Representative Four-Stage Low Pressure Turbine Rig
,”
ASME J. Turbomach.
,
131
(
1
),
011017
.
7.
de la Rosa Blanco
,
E.
,
Hodson
,
H.
,
Vázquez
,
R.
, and
Torre
,
D.
,
2003
, “
Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between Pressure Surface Separation and Endwall Flows
,”
Proc. Inst. Mech. Eng., J. Power Energy
,
217
(
4
), pp.
433
441
.
8.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME Turb Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
, pp.
1417
1430
.
9.
Giovannini
,
M.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Simoni
,
D.
,
Yepmo
,
V.
, and
Bertini
,
F.
,
2018
, “
Secondary Flows in Low-Pressure Turbines Cascades: Numerical and Experimental Investigation of the Impact of the Inner Part of the Boundary Layer
,”
ASME J. Turbomach.
,
140
(
11
), p.
111002
.
10.
Coull
,
J.
,
Clark
,
C.
, and
Vázquez
,
R.
,
2019
, “
The Sensitivity of Turbine Cascade Endwall Loss to Inlet Boundary Layer Thickness
,”
J. Global Power Propulsion Soc.
,
3
, pp.
540
554
.
11.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near the Endwall in a Linear Low Pressure Turbine Cascade With Periodically Passing Wakes
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 2D: Turbomachinery
,
Düsseldorf, Germany
.
12.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2017
, “
Numerical Investigation of Secondary Flows in a High-lift Low Pressure Turbine
,”
Int. J. Heat Fluid Flow
,
63
, pp.
149
157
.
13.
Gross
,
A.
,
Marks
,
C.
,
Sondergaard
,
R.
,
Bear
,
P.
, and
Mitch
,
W.
,
2018
, “
Experimental and Numerical Characterization of Flow Through Highly Loaded Low-Pressure Turbine Cascade
,”
J. Propul. Power
,
34
(
1
), pp.
27
39
.
14.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Large-Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,”
ASME J. Turbomach.
,
141
(
12
),
121005
.
15.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2019
, “
Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure-Turbine Cascade – Part II: Loss Generation
,”
ASME J. Turbomach.
,
141
(
5
), p.
051004
.
16.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2021
, “
Numerical Predictions of Turbine Cascade Secondary Flows and Heat Transfer With Inflow Turbulence
,”
ASME J. Turbomach.
,
143
(
12
), p.
121008
.
17.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
18.
González
,
P.
,
Ulízar
,
I.
,
Vázquez
,
R.
, and
Hodson
,
H.
,
2002
, “
Pressure and Suction Surfaces Redesign for High-Lift Low-Pressure Turbines
,”
ASME J. Turbomach.
,
124
(
2
), pp.
161
166
.
19.
Lázaro
,
B.
,
González
,
E.
, and
Vázquez
,
R.
,
2007
, “
Unsteady Loss Production Mechanisms in Low Reynolds Number, High Lift, Low Pressure Turbine Profiles
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
Montréal, Canada
,
May 14–17
, pp.
895
903
. .
20.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edge-Based Navier-Stokes Solver on Commodity Graphics Processor Units
,”
Int. J. Comput. Fluid Dyn.
,
31
(
2
), pp.
93
108
.
21.
Gisbert
,
F.
,
Sotillo
,
A.
, and
Pueblas
,
J.
,
2022
, “
Efficient Implementation of a High-Order Compressible Navier-Stokes Equations Solver Running on Graphics Processing Units
,” ECCOMAS 8th European Congress on Computational Methods in Applied Sciences and Engineering,
Olso, Norway
.
22.
Torre
,
D.
,
García-Valdecasas
,
G.
,
Puente
,
A.
,
Hernández
,
D.
, and
Luque
,
S.
,
2021
, “
Design and Testing of a Multi-stage IP Turbine for Future Geared Turbofans
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
Online
,
June 7-11
.
23.
Bolinches-Gisbert
,
M.
,
Cadrecha
,
D.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2020
, “
Prediction of Reynolds Number Effects on Low-Pressure Turbines Using a High-Order ILES Method
,”
ASME J. Turbomach.
,
142
(
3
), p.
031002
.
24.
Bolinches-Gisbert
,
M.
,
Cadrecha
,
D.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2021
, “
Numerical and Experimental Investigation of the Reynolds Number and Reduced Frequency Effects on Low-Pressure Turbine Airfoils
,”
ASME J. Turbomach.
,
143
(
2
), p.
021004
.
25.
Kahan
,
W.
,
1965
, “
Further Remarks on Reducing Truncation Errors
,”
Commun. ACM
,
8
(
1
), p.
40
.
26.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
27.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
28.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries, La Cañada
.
29.
Langtry
,
R.
, and
Menter
,
F.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
30.
Giles
,
M.
,
1990
, “
Non-Reflecting Boundary Conditions for Euler Equations
,”
AIAA J.
,
28
(
12
), pp.
2050
2057
.
31.
Huynh
,
H.
,
2007
, “
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
,”
18th AIAA Computational Fluid Dynamics Conference
,
Miami, FL
,
June 25–28
, pp.
2007
4079
.
32.
Pirozzoli
,
S.
,
2010
, “
Generalized Conservative Approximations of Split Convective Derivative Operators
,”
J. Comput. Phys.
,
229
(
19
), pp.
7180
7190
.
33.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
131
(
2
), pp.
267
279
.
34.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
35.
Lodato
,
G.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2008
, “
Three-Dimensional Boundary Conditions for Direct and Large-Eddy Simulation of Compressible Viscous Flows
,”
J. Comput. Phys.
,
227
(
10
), pp.
5105
5143
.
36.
Odier
,
N.
,
Sanjosé
,
M.
,
Gicquel
,
L.
,
Poinsot
,
T.
,
Moreau
,
S.
, and
Duchaine
,
F.
,
2019
, “
A Characteristic Inlet Boundary Condition for Compressible, Turbulent, Multispecies Turbomachinery Flows
,”
Computers and Fluids
,
178
, pp.
41
55
.
37.
Guézennec
,
N.
, and
Poinsot
,
T.
,
2009
, “
Acoustically Nonreflecting and Reflecting Boundary Conditions for Vortcity Injection in Compressible Solvers
,”
AIAA J.
,
47
(
7
), pp.
1709
1722
.
38.
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
, and
Travin
,
A.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow, Turbulence Combust.
,
93
, pp.
63
92
.
39.
Piomelli
,
U.
, and
Chasnov
,
J. R.
,
1996
,
Large-Eddy Simulations: Theory and Applications
,
Springer Netherlands
,
Dordrecht
, pp.
269
336
.
You do not currently have access to this content.