Abstract

Compared to the subject of rotating stall, less attention has been given to prestall flow disturbances in turbomachinery. This is mostly due to the fact that these phenomena, often referred to as Rotating Instabilities, do not necessarily or distinctly occur in every compressor and usually last for a long period without posing serious threats to stable operation. The present study aims at numerically characterizing prestall disturbances in detail in a compressor stage in which they have been experimentally observed. Full-annulus computational fluid dynamics (CFD) computations employing a hybrid scale-resolving turbulence model are performed and compared against unsteady experimental data. Assessment of specific prestall disturbance metrics, including power spectral density, coherence, and circumferential mode distribution at the rotor clearance, shows that the numerical model is successful in reproducing the unsteady phenomena close to stall inception. Moreover, dynamic mode decomposition is employed to directly link each peak of the unique prestall disturbance spectral signature to spatial structures with a different circumferential order. This procedure is done for both 1D circumferential modes, based on flush-mounted pressure probes, and for 2D surfaces exposing the tip clearance dynamics. The high-resolution numerical model, supplemented with vortex identification criteria and data-driven decompositions, enhances the understanding of prestall disturbances and their associated coherent flow structures.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Pardowitz
,
B.
,
Moreau
,
A.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2015
, “
Experimental Identification of Rotating Instability of an Axial Fan With Shrouded Rotor
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
229
(
5
), pp.
520
528
.
2.
Pardowitz
,
B.
,
2018
, “Rotierende Instabilität in Axialverdichtern: Experimentelle Evaluation Einer Neuen Entstehungshypothese,”
Doctoral thesis
,
Technische Universität Berlin
,
Berlin
.
3.
Beselt
,
C.
,
Pardowitz
,
B.
,
Rennings
,
R.
,
Sorge
,
R.
,
Peitsch
,
D.
,
Enghardt
,
L.
,
Thiele
,
F.
,
Ehrenfried
,
K.
, and
Thamsen
,
P.
,
2013
, “
Influence of the Clearance Size on Rotating iInstability in an Axial Compressor Stator
,”
10th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2013
,
Lappeenranta, Finland
,
Apr. 15–19
, European Turbomachinery Society.
4.
Beselt
,
C.
,
Peitsch
,
D.
,
van Rennings
,
R.
,
Thiele
,
F.
, and
Ehrenfried
,
K.
,
2014
, “
Experimental and Numerical Investigation of the Unsteady Endwall Flow in a Highly Loaded Axial Compressor Stator
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Düsseldorf, Germany
,
American Society of Mechanical Engineers
, pp.
1
12
.
5.
Pardowitz
,
B.
,
Tapken
,
U.
,
Neuhaus
,
L.
, and
Enghardt
,
L.
,
2015
, “
Experiments on an Axial Fan Stage: Time-Resolved Analysis of Rotating Instability Modes
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062505
.
6.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
7.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2000
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
8.
Jüngst
,
M.
,
2019
, “
The Transonic Compressor With Non-uniform Tip Clearance: Effects on Aerodynamics and Aeroelasticity
,” Ph.D. thesis,
Technische Universität
,
Darmstadt
.
9.
Jüngst
,
M.
,
Holzinger
,
F.
,
Schiffer
,
H.-P.
, and
Leichtfuss
,
S.
,
2015
, “
Analysing Non-Synchronous Blade Vibrations in a Transonic Compressor Rotor
,”
11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Madrid, Spain
, Vol. 079, pp.
1
13
.
10.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
11.
Vo
,
H. D.
,
2006
, “
Role of Tip Clearance Flow in the Generation of Non-synchronous Vibrations
,” 44th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, American Institute of Aeronautics and Astronautics
, pp.
1
8
.
12.
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2011
, “
The Tip Clearance Flow Resonance Behind Axial Compressor Nonsynchronous Vibration
,”
ASME J. Turbomach.
,
133
(
4
), p.
041030
.
13.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,”
Twelfth International Symposium on Airbreathing Engines
,
Melbourne, Australia
, pp.
1
13
.
14.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H.-P.
,
2008
, “
Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor
, ”
Volume 6: Turbomachinery, Parts A, B, and C
,
ASME
.
15.
Eck
,
M.
,
Geist
,
S.
, and
Peitsch
,
D.
,
2017
, “
Physics of Prestall Propagating Disturbances in Axial Compressors and Their Potential as a Stall Warning Indicator
,”
Appl. Sci.
,
7
(
3
), p.
285
.
16.
Eck
,
M.
,
2020
, “
Propagating Disturbances as a Prestall Instability in Axial Compressors
,” Doctoral thesis,
Technische Universität Berlin
,
Berlin
.
17.
Eck
,
M.
,
Rückert
,
R.
,
Peitsch
,
D.
, and
Lehmann
,
M.
,
2020
, “
Prestall Instability in Axial Flow Compressors
,”
ASME J. Turbomach.
,
142
(
7
), p.
071009
.
18.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Iwamoto
,
T.
, and
Ando
,
Y.
,
1991
, “
Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
281
287
.
19.
Pardowitz
,
B.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2012
, “
Time-Resolved Rotating Instability Waves in an Annular Cascade
,” 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO,
American Institute of Aeronautics and Astronautics
, pp.
1
14
.
20.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2013
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
21.
Möller
,
D.
, and
Schiffer
,
H.-P.
,
2021
, “
On the Mechanism of Spike Stall Inception and Near Stall Nonsynchronous Vibration in an Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021007
.
22.
Wang
,
H.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2018
, “
Numerical Investigations of Rotating Instability and Unsteady Tip Vortex Structures in an Axial Compressor
,”
Volume 2A: Turbomachinery
,
Oslo, Norway
,
American Society of Mechanical Engineers
, pp.
1
15
.
23.
Chen
,
X.
,
Koppe
,
B.
,
Lange
,
M.
,
Chu
,
W.
, and
Mailach
,
R.
,
2021
, “
Rotating Instabilities in a Low-Speed Single Compressor Rotor Row With Varying Blade Tip Clearance
,”
Energies
,
14
(
24
), p.
8369
.
24.
Kameier
,
F.
,
1994
, “
Experimentelle Untersuchung zur Entstehung und Minderung des Blattspitzen-Wirbellärms axialer Strömungsmaschinen,” Fortschritt-Berichte VDI.: Reihe 7, Strömungstechnik. VDI-Verlag
.
25.
ANSYS, Inc
, “
ANSYS Academic Research, Release 19.2
,” ANSYS CFX-Solver Theory Guide.
26.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
27.
Menter
,
F.
, and
Egorov
,
Y.
,
2005
, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
American Institute of Aeronautics and Astronautics
, pp.
1
13
.
28.
Menter
,
F.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
41st Aerospace Sciences Meeting and Exhibit
,
Otterfing, Germany
,
American Institute of Aeronautics and Astronautics
, pp.
1
12
.
29.
Numeca IGG™/AutoGrid5™ v17.1. s.a.
30.
Celik
,
I. B.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
J. Fluids Engng Editorial Policy
,
130
(
7
), p.
078001
.
31.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
(
1
), pp.
5
28
.
32.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
S. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
(
2
), p.
115
.
33.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
34.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.
35.
de Almeida
,
V. B. C.
, and
Peitsch
,
D.
,
2021
, “
Numerical Investigations of a High Pressure Compressor Exposed to Unsteady Pressure Gain Combustion Employing Data-Driven Methods
,” Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, Virtual, Online,
American Society of Mechanical Engineers
, pp.
1
13
.
36.
Neumann
,
P.
,
de Almeida
,
V. B. C.
,
Motta
,
V.
,
Malzacher
,
L.
,
Peitsch
,
D.
, and
Quaranta
,
G.
,
2020
, “
Dynamic Mode Decomposition Analysis of Plasma Aeroelastic Control of Airfoils in Cascade
,”
J. Fluids Struct.
,
94
, p.
102901
.
37.
de Almeida
,
V. B. C.
,
2022
, “
Numerical Assessment of Aerodynamic and Aeroelastic Effects of Pressure Gain Combustion in Axial Compressors
,” Ph.D. thesis,
Technische Universität Berlin, Chair for Aero Engines
,
Berlin, Germany
.
38.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
39.
Nishioka
,
T.
,
Kanno
,
T.
, and
Hiradate
,
K.
,
2011
, “
Rotor-Tip Flow Fields Near Inception Point of Rotating Instability in an Axial-Flow Fan
,”
Volume 7: Turbomachinery, Parts A, B, and C
,
ASME
.
40.
Chen
,
J.-P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.
41.
Schreiber
,
J.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2017
, “
Observations on Rotating Instabilities and Spike Type Stall Inception in a High-Speed Multistage Compressor
,”
Int. J. Rotating Mach.
,
2017
, pp.
1
11
.
42.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2012
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.
43.
Brandstetter
,
C.
,
Ottavy
,
X.
,
Paoletti
,
B.
, and
Stapelfeldt
,
S.
,
2021
, “
Interpretation of Stall Precursor Signatures
,”
ASME J. Turbomach.
,
143
(
12
), p.
121011
.
44.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
45.
Spall
,
R. E.
,
Gatski
,
T. B.
, and
Grosch
,
C. E.
,
1987
, “
A Criterion for Vortex Breakdown
,”
Phys. Fluids
,
30
(
11
), p.
3434
.
46.
Lucca-Negro
,
O.
, and
O’Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
47.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2002
, “
Short and Long Length-Scale Disturbances Leading to Rotating Stall in an Axial Compressor Stage With Different Stator/Rotor Gaps
,”
ASME J. Turbomach.
,
124
(
3
), pp.
376
384
.
48.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
1999
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
49.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
50.
Eck
,
M.
, and
Peitsch
,
D.
,
2023
, “
Rotor Clearance Flow Measurements Employing a Novel Miniature Sensor
,”
Volume 13A: Turbomachinery—Axial Flow Fan and Compressor Aerodynamics
,
American Society of Mechanical Engineers
.
You do not currently have access to this content.