Abstract

The turbine cavity faces challenges from external mainstream ingestion, mitigated by sealing flow from the compressor side. Despite these efforts, achieving complete sealing remains difficult. This study focuses on introducing the ingress penetration depth δp as a novel perspective for evaluating the consequences of external ingestion in turbine cavities. Penetration depth describes how deeply the mainstream ingestion can affect the turbine cavity. The study commences with an examination of the flow within the turbine cavity, specifically highlighting the radial stratification resulting from external ingestion. The examination is grounded in detached eddy simulation (DES) results, which are subsequently validated through experimental data. The radial stratification characteristics observed lay the foundation for introducing the concept of penetration depth. Subsequently, the study proposes a criterion for assessing penetration depth, utilizing the radial distribution pattern of the swirl ratio. To incorporate the penetration depth into the evaluation of sealing effectiveness, a one-dimensional correlation of sealing effectiveness based on turbulent diffusion assumption is established and validated using experimental data from both the current study and existing literature. Based on the correlation method and the penetration depth, the study proposes a series-connected model. The series-connected model is segmented by the penetration depth δp: in regions where r>δp, the one-dimensional correlation is applicable, while in regions where r<δp, the lumped parameter models from existing literature remain valid. The series-connected model can be applied in future turbine cavity investigations and secondary air system reduced-order modeling.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
2.
Owen
,
J. M.
, “
Prediction of Ingestion Through Turbine Rim Seals—Part 1: Rotationally-Induced Ingress
,”
Proc. Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
1071
1082
.
3.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
. .
4.
Owen
,
J. M.
,
1969
,
Flow Between a Rotating and a Stationary Disc
,
University of Sussex
,
Cambridge UK
.
5.
Bayley
,
F. J.
, and
Owen
,
J.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Power
,
92
(
3
), pp.
335
341
. .
6.
Owen
,
J. M.
, “
Prediction of Ingestion Through Turbine Rim Seals—Part 2: Externally-Induced and Combined Ingress
,”
Proc. Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
1083
1093
.
7.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
8.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
9.
Kobayashi
,
N.
,
Matsumato
,
M.
, and
Shizuya
,
M.
,
1984
, “
An Experimental Investigation of a Gas Turbine Disk Cooling System
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
136
141
.
10.
Phadke
,
U.
, and
Owen
,
J.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
11.
Phadke
,
U.
, and
Owen
,
J.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
12.
Phadke
,
U.
, and
Owen
,
J.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.
13.
Dadkhah
,
S.
,
Turner
,
A.
, and
Chew
,
J.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor–Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.
14.
Borutzky
,
W.
,
Barnard
,
B.
, and
Thoma
,
J.
,
2002
, “
An Orifice Flow Model for Laminar and Turbulent Conditions
,”
Simul. Modell. Pract. Theory
,
10
(
3
), pp.
141
152
.
15.
Hualca
,
F. P.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2020
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021020
.
16.
Graikos
,
D.
,
Tang
,
H.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2022
, “
A New Interpretation of Hot Gas Ingress Through Turbine Rim Seals Influenced by Mainstream Annulus Swirl
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111005
.
17.
Owen
,
J. M.
,
Pountney
,
O.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part II: Combined Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031013
.
18.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.
19.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
20.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
21.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2012
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.
22.
Savov
,
S. S.
, and
Atkins
,
N. R.
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,”
Proc. Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
, American Society of Mechanical Engineers, p.
V05BT15A009
.
23.
Cao
,
C.
,
Chew
,
J.
,
Millington
,
P.
, and
Hogg
,
S.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
24.
Gao
,
F.
,
Chew
,
J. W.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.
25.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
26.
Vella
,
S.
,
Darby
,
P.
,
Carnevale
,
M.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Jarrossay
,
C.
,
Salvatori
,
F.
, et al
, “
A Combined Experimental and Turbulence-Resolved Modelling Approach for Aeroengine Turbine Rim Seals
,”
Proc. ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
, p.
V07BT14A025
.
27.
Lei
,
X.
,
RuoNan
,
W.
,
Guang
,
L.
,
ZengYan
,
L.
, and
Qiang
,
D.
, “
Numerical Investigation on Unsteady Characteristics in Different Rim Seal Geometries: Part A
,”
Proc. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers
,
Virtual, Online
,
Sept. 21–25
, p.
V07CT14A013
.
28.
Jefferson-Loveday
,
R. J.
,
2020
, “
Enhanced Delayed Detached Eddy Simulation for Cavities and Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011017
.
29.
Batchelor
,
G. K.
,
1951
, “
Note on a Class of Solutions of the Navier-Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
,
4
(
1
), pp.
29
41
.
30.
Kármán
,
T. V.
,
1921
, “
Über Laminare und Turbulente Reibung
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
1
(
4
), pp.
233
252
.
31.
Stewartson
,
K.
,
1953
, “
On the Flow Between Two Rotating Coaxial Disks
,”
Math. Proc. Cambridge Philos. Soc.
,
49
(
2
), pp.
333
341
.
32.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
, 82(1), pp.
217
230
.
33.
Daniels
,
W.
, and
Johnson
,
B.
,
1993
, “
Experimental Investigation of Turbine Disk Cavity Aerodynamics and Heat Transfer (No. UTRC-93-957878-27)
.”
You do not currently have access to this content.