Abstract

A laidback fan-shaped hole is commonly used due to its superior lateral film coverage. Its discharge coefficient is significantly influenced by internal crossflow owing to its complex geometrical structure. In this paper, the authors numerically investigate the flow mechanisms of the laidback fan-shaped hole under the influence of internal crossflow. The numerical simulations utilize the validated SST k–ω turbulence model, with the Reynolds number of internal crossflow ranging from 20,000 to 160,000 and the ratio of pressure ranging from 1 to 1.6. The results show that the different orientations of internal crossflow cause varying degrees of in-hole separation that led to a discrepancy in the discharge coefficient. The larger the Reynolds number of the crossflow is, the more drastic the change in the discharge coefficient. Furthermore, a comparison between the results obtained with and without internal crossflow has shown that the length of the cylindrical section is the primary factor determining the discharge coefficient of the laidback fan-shaped hole. The magnitude of the discharge coefficient depended on the extent of flow separation within the cylindrical section. Additionally, the numerical simulations obtained the discharge coefficient under a high internal crossflow Reynolds number of internal crossflow and a wall with a constant thickness and compared it with the predictions of a low-dimensional model of the discharge coefficient (based on our previous experimental data). The discrepancy between the results is within 10%, thus verifying the scalability of the low-dimensional model.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Hay
,
N.
, and
Lampard
,
D.
,
1995
, “
The Discharge Coefficient of Flared Film Cooling Holes
,”
Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Houston, TX
,
June 5–8
, p.
V004T09A015
, ASME Paper No. 95-GT015.
4.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Stockholm, Sweden
,
June 2–5
, p.
V004T09A070
, ASME Paper No. 98-GT402.
5.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
6.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
7.
Roger
,
T.
, and
Hersh
,
A. S.
,
1975
, “
The Effect of Grazing Flow on the Steady State Resistance of Squared-Edged Orifices
,”
Proceedings of the 2nd Aeroacoustics Conference
,
March 1975
, AIAA Paper No. 75-493.
8.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
1999
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
9.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p. 061008.
10.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
11.
Ye
,
L.
,
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4818
.
12.
Li
,
L.
,
Liu
,
C.
,
Ye
,
L.
,
Zhu
,
H.-R.
,
Luo
,
J.-X.
, and
Liu
,
S.
,
2021
, “
Experimental Investigation on Effects of Cross-Flow Reynolds Number and Blowing Ratios to Film Cooling Performance of the Y-Shaped Hole
,”
Int. J. Heat Mass Transfer
,
179
, p.
121682
.
13.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 4: Heat Transfer, Parts A and B
,
Berlin, Germany
,
June 9–13
, pp.
893
903
, ASME Paper No. GT2008-51036.
14.
Oliver
,
T. A.
,
Bogard
,
D. G.
, and
Moser
,
R. D.
,
2019
, “
Large Eddy Simulation of Compressible, Shaped-Hole Film Cooling
,”
Int. J. Heat Mass Transfer
,
140
, pp.
498
517
.
15.
Zamiri
,
A.
, and
Chung
,
J. T.
,
2022
, “
Large Eddy Simulation of Internal Coolant Crossflow Orientation Effects on Film-Cooling Effectiveness of Fan-Shaped Holes
,”
Int. J. Heat Mass Transfer
,
190
, p.
122778
.
16.
Haoyang
,
L.
,
Qiang
,
D.
,
Qingzong
,
X.
,
Guangyao
,
X.
,
Hongye
,
L.
, and
Dawei
,
C.
,
2023
, “
Sensitivity of Laidback Fan-Shaped Hole Discharge Coefficient Under Internal Coolant Crossflow Conditions
,”
ASME J. Turbomach.
,
145
(
11
), p.
111007
.
17.
Sakai
,
E.
, and
Takahashi
,
T.
,
2011
, “
Experimental and Numerical Study on Effects of Turbulence Promoters on Flat Plate Film Cooling
,”
Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 5: Heat Transfer, Parts A and B
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
105
115
, ASME Paper No. GT2011-45196.
18.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
19.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Method for Correlating Discharge Coefficients of Film-Cooling Holes
,”
AIAA J.
,
36
(
6
), pp.
976
980
.
20.
Xu
,
Q.
,
Xu
,
G.
,
Du
,
Q.
,
Chen
,
D.
,
Liu
,
H.
, and
Li
,
H.
,
2023
, “
Numerical Study of Crossflow Effects on Discharge Coefficient of the Converging Slot Hole
,”
ASME J. Turbomach.
,
145
(
6
), p.
061005
.
You do not currently have access to this content.