Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper describes an aeroelastic experimental campaign on a low-pressure turbine-bladed rotor in a rotating wind tunnel that took place as a part of the Advanced Research Into Aeromechanical Solutions (ARIAS) EU project. The campaign can be considered a continuation of the free-flutter test that was performed as part of the FUTURE EU project, where the saturation of asynchronous vibrations due to dry friction was characterized. This new campaign studied new aspects of the physics behind saturated flutter, including the non-linear interaction between synchronous excitation and asynchronous vibration, the effectiveness of different mistuning patterns to suppress flutter, and the viability of under-platform dampers as a technology to control the amplitude of asynchronous vibrations. Furthermore, the campaign explored various operation conditions for the turbine rotor, including near-stall. In general, there was a good agreement between the theoretical predictions regarding all these different aspects of turbine flutter and the test results.

References

1.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliott
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
.
2.
Sawyer
,
S.
, and
Fleeter
,
S.
,
1995
, “
Flutter Stability of a Detuned Cascade in Subsonic Compressible Flow
,”
J. Propul. Power
,
11
(
5
), pp.
923
930
.
3.
Bleeg
,
J. M.
,
Yang
,
M.-T.
, and
Eley
,
J. A.
,
2008
, “
Aeroelastic Analysis of Rotors With Flexible Disks and Alternate Blade Mistuning
,”
ASME J. Turbomach.
,
131
(
1
), p.
011011
.
4.
Figaschewsky
,
F.
,
Kuhhorn
,
A.
,
Beirow
,
B.
,
Nipkau
,
J.
,
Giersch
,
T.
, and
Power
,
B.
,
2017
, “
Design and Analysis of an Intentional Mistuning Experiment Reducing Flutter Susceptibility and Minimizing Forced Response of a Jet Engine Fan
,”
Volume 7B: Structures and Dynamics of Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
.
5.
Sanliturk
,
K. Y.
,
Imregun
,
M.
, and
Ewins
,
D. J.
,
1997
, “
Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
96
103
.
6.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2020
, “
A Novel Test Rig for Friction Parameters Measurement on Underplatform Dampers
,”
Int. J. Solids Struct.
,
185–186
, pp.
170
181
.
7.
Petrov
,
E.
,
Di Mare
,
L.
,
Hennings
,
H.
, and
Elliott
,
R.
,
2010
, “
Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
052504
.
8.
Szwedowicz
,
J.
,
Gibert
,
C.
,
Sommer
,
T. P.
, and
Kellerer
,
R.
,
2007
, “
Numerical and Experimental Damping Assessment of a Thin-Walled Friction Damper in the Rotating Setup With High Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012502
.
9.
Hudson
,
R.
, and
Sinha
,
A.
,
2016
, “
Frictional Damping of Flutter: Microslip Versus Macroslip
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061010
.
10.
Gross
,
J.
,
Berthold
,
C.
,
Krack
,
M.
, and
Frey
,
C.
,
2022
, “
Fully Coupled Analysis of Flutter Induced Limit Cycles: Frequency vs. Time Domain Methods
,”
Turbo Expo: Power for Land, Sea, and Air
,
Rotterdam, The Nuetherlands
,
June 13–17
.
11.
Rodríguez-Blanco
,
S.
,
González-Monge
,
J.
, and
Martel
,
C.
,
2023
, “
Asymptotic Evaluation of Nonlinear Friction Effects in Realistic LPT Rotors
,”
Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
.
12.
Schwarz
,
S.
,
Reil
,
J.
,
Gross
,
J.
,
Hartung
,
A.
,
Rittinger
,
D.
, and
Krack
,
M.
,
2023
, “
Friction Saturated Limit Cycle Oscillations—Test Rig Design and Validation of Numerical Prediction Methods
,”
Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
.
13.
Mao
,
Z.
, and
Kielb
,
R. E.
,
2017
, “
Interaction of Concurrent Forced Response and Flutter Phenomena in a Compressor Stage
,”
Volume 7B: Structures and Dynamics of Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
.
14.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Ivaturi
,
R.
,
2013
, “
Conceptual Analysis of the Non-linear Forced Response of Aerodynamically Unstable Bladed-Discs
,”
Proceedings of the ASME Turbo Expo 2013
, ASME Paper No. GT2013-94851.
15.
Groth
,
P.
,
Martensson
,
H.
, and
Edin
,
N.
,
2009
, “
Experimental and Computational Fluid Dynamics Based Determination of Flutter Limits in Supersonic Space Turbines
,”
ASME J. Turbomach.
,
132
(
1
), p.
011010
.
16.
Lucio
,
M.
,
Bergmans
,
J.
,
Vogt
,
D.
, and
Fransson
,
T. H.
,
2014
, “
A Remotely Operated Aeroelastically Unstable Low Pressure Turbine Cascade for Turbomachinery Aeromechanics Education and Training Remote Flutter Lab
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032507
.
17.
Corral
,
R.
,
Crespo
,
J.
, and
Gisbert
,
F.
,
2004
, “
Parallel Multigrid Unstructured Method for the Solution of the NavierStokes Equations
,”
Aerospace Sciences Meetings
,
Reno
,
January
.
18.
Gisbert
,
F.
,
Corral
,
R.
, and
Pueblas
,
J.
,
2013
, “
Computation of Turbomachinery Flows With a Parallel Unstructured Mesh Navier-Stokes Equations Solver on GPUs
,”
Fluid Dynamics and Co-Located Conferences
,
San Diego, CA
,
June 24–27
.
19.
Cordoba
,
O.
,
2021
, “
FEM Considerations to Simulate Interlocked Bladed Disks With Lagrange Multipliers
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2020-15140.
20.
Corral
,
R.
,
Manuel Gallardo
,
J.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
82
.
21.
Kaza
,
K.-R. V.
, and
Kielb
,
R. E.
,
1982
, “
Flutter and Response of a Mistuned Cascade in Incompressible Flow
,”
AIAA J.
,
20
(
8
), pp.
1120
1127
.
22.
Zhai
,
Y.
, and
Bladh
,
R.
,
2011
, “
Aeroelastic Stability Assessment of an Industrial Compressor Blade Including Mistuning Effects
,” Vol. 6, pp.
1271
1286
, ASME Paper No. GT2011-45800.
23.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p.
011006
.
24.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2006
, “
A Methodology for the Vibration Amplitude Prediction of Self-Excited Rotors Based on Dimensional Analysis
,”
Proceedings of the 51st ASME Gas Turbine and Aero Engine Congress, Exposition and Users Symposium
, ASME Paper No. 2005-GT-90668.
25.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2014
, “
Non-Linear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
56
(
6
), pp.
1124
1132
.
26.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1985
, “
Effects of Friction Dampers on Aerodynamically Unstable Rotor Stages
,”
AIAA J.
,
23
(
2
), pp.
262
270
.
27.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
.
28.
Bermejo
,
O.
,
Gallardo
,
J. M.
,
Sotillo
,
A.
,
Altuna
,
A.
,
Alonso
,
R.
, and
Puente
,
A.
,
2024
, “
Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal
,”
Int. J. Turbomach. Propul. Power
,
9
(
2
), p.
13
.
29.
Rodriguez-Blanco
,
S.
,
Gonzalez-Monge
,
J.
, and
Martel
,
C.
,
2023
, “
Numerical Investigation of Friction Induced Interaction of Flutter Modes in a Realistic Low Pressure Turbine Rotor
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111021
.
30.
Corral
,
R.
,
Khemiri
,
O.
, and
Martel
,
C.
,
2018
, “
Design of Mistuning Patterns to Control the Vibration Amplitude of Unstable Rotor Blades
,”
Aerosp. Sci. Technol.
,
80
, pp.
20
28
.
31.
Rodriguez-Blanco
,
S.
, and
Martel
,
C.
,
2023
, “
Characterization of the Anomalous Vibration Response of an Intentionally Mistuned LPT Rotor
,”
Machines
,
11
(
1
), p.
19
.
You do not currently have access to this content.