Abstract

In this article, novel machine-learnt transition and turbulence models are applied to the prediction of boundary-layer transition and wake mixing in a low-pressure turbine (LPT) cascade, including unsteady inflow cases with incoming wakes. A laminar kinetic energy (LKE) transport approach is employed as baseline transition framework. The application of the machine-learnt explicit algebraic Reynolds stress models (EARSMs) takes advantage of a zonal strategy based on a newly developed sensing function that allows automated wake demarcation. This work compares the performance of several approaches that are based on the application of improved transition models without machine learnt EARSMs, baseline transition model with EARSMs trained for improved wake mixing, and new transition and turbulence closures that are simultaneously developed in a fully coupled way and aimed at improving both transition and wake mixing predictions in LPTs. The investigation is carried out on a cascade of industrial footprint, representative of modern LPT bladings. First, the various modeling frameworks are evaluated, without bar wakes (steady conditions), over a wide range of Reynolds number values. Unsteady Reynolds-averaged Navier–Stokes (URANS) analyses have also been carried out to investigate the predictive capabilities of machine-learnt closures in the presence of incoming bar wakes. Reynolds-averaged Navier–Stokes (RANS)/URANS results are scrutinized against large eddy simulation (LES) calculations and experimental data. It will be demonstrated that machine-learnt EARSMs are capable of producing realistic wake mixing when simply applied on top of the baseline transition models. However, the most accurate predictions will be shown to be provided by fully integrated machine-learnt transition/turbulence closures.

References

1.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low Pressure Turbine—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
71005
.
2.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
3.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
4.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial Flow Turbomachinery
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, pp.
1821
1830
.
5.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade-and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid. Mech.
,
54
(
1
), pp.
255
285
.
6.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
7.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review
,”
Int. J. Turbomach. Propuls.
,
2
(
2
), p.
4
.
8.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.
9.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.
10.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2019
, “
Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade with Variable Inlet Conditions, Part II: Loss Generation
,”
ASME J. Turbomach.
,
141
(
5
), p.
051004
.
11.
Michelassi
,
V.
, and
Wissink
,
J. G.
,
2015
, “
Turbulent Kinetic Energy Production in the Vane of a Low-Pressure Linear Turbine Cascade With Incoming Wakes
,”
Int. J. Rotating Machinery
,
2015
(
650783
), pp.
1
15
.
12.
Duraisamy
,
K.
,
2021
, “
Perspectives on Machine Learning-Augmented Reynolds Averaged and Large Eddy Simulation Models of Turbulence
,”
Phys. Rev. Fluids
,
6
(
5
), p.
050504
.
13.
Weatheritt
,
J.
, and
Sandberg
,
R. D.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress-Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
.
14.
Ferreira
,
C.
,
2001
, “
Gene Expression Programming: A New Adaptive Algorithm for Solving Problems
,”
Complex Syst.
,
13
(
2
), pp.
87
129
.
15.
Akolekar
,
H. D.
,
Sandberg
,
R. D.
,
Hutchins
,
N.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2019
, “
Machine-Learnt Turbulence Closures for Low Pressure Turbines With Unsteady Inflow Conditions
,”
ASME J. Turbomach.
,
141
(
10
), p.
101009
.
16.
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Hutchins
,
N.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2019
, “
Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
141
(
4
), p.
041010
.
17.
Akolekar
,
H. D.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Hutchins
,
N.
, and
Michelassi
,
V.
,
2019
, “
Turbulence Model Development for Low & High Pressure Turbines Using a Machine Learning Approach
,”
International Society for Air Breathing Engines (ISABE)
,
Canberra, Australia
,
September
, p.
24010
.
18.
Pacciani
,
R.
,
Marconcini
,
M.
,
Bertini
,
F.
,
Taddei
,
S. R.
,
Spano
,
E.
,
Akolekar
,
H. D.
,
Sandberg
,
R. D.
, and
Arnone
,
A.
,
2021
, “
Assessment of Machine-Learnt Turbulence Models Trained for Improved Wake-Mixing in Low Pressure Turbine Flows
,”
Energies
,
14
(
24
), p.
8327
.
19.
Zafar
,
M. I.
,
Xiao
,
H.
,
Choudhari
,
M. M.
,
Li
,
F.
,
Chang
,
C. L.
,
Paredes
,
P.
, and
Venkatachari
,
B.
,
2020
, “
Convolutional Neural Network for Transition Modeling Based on Linear Stability Theory
,”
Phys. Rev. Fluids
,
5
(
11
), pp.
1
15
.
20.
Yang
,
M.
, and
Xiao
,
Z.
,
2020
, “
Improving the K- ω - γ -Ar Transition Model by the Field Inversion and Machine Learning Framework
,”
Phys. Rev. Fluids
,
32
(
6
), p.
064101
.
21.
Akolekar
,
H. D.
,
Waschkowski
,
F.
,
Zhao
,
Y.
,
Pacciani
,
R.
, and
Sandberg
,
R. D.
,
2021
, “
Transition Modeling for Low Pressure Turbines Using CFD-Driven Machine Learning
,”
Energies
,
14
(
15
), p.
4680
.
22.
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Michelassi
,
V.
, and
Sandberg
,
R. D.
,
2020
, “
RANS Turbulence Model Development Using CFD-Driven Machine Learning
,”
J. Comput. Phys.
,
411
, p.
109413
.
23.
Akolekar
,
H. D.
,
Pacciani
,
R.
,
Waschkowsky
,
F.
,
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2022
, “
Multi-objective Development of Machine-Learnt Closures for Fully Integrated Transition and Wake Mixing Predictions in Low Pressure Turbines
,”
ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, Netherlands
,
June 13–17
.
24.
Pacciani
,
R.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Lutum
,
E.
,
2012
, “
Calculation of Steady and Periodic Unsteady Blade Surface Heat Transfer in Separated Transitional Flow
,”
ASME J. Turbomach.
,
134
(
6
), p.
061037
.
25.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Predicting High-Lift Low-Pressure Turbine Cascades Flow Using Transition-Sensitive Turbulence Closures
,”
ASME J. Turbomach.
,
136
(
5
), p.
051007
.
26.
Simoni
,
D.
,
Berrino
,
M.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Off-Design Performance of a Highly Loaded LP Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions
,”
ASME J. Turbomach.
,
137
(
7
), p.
071009
.
27.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2015
, “
Low-Pressure Turbine Cascade Performance Calculations With Incidence Variation and Periodic Unsteady Inflow Conditions
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
,
28.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
29.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
(
1
), pp.
12
26
.
30.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
5
), pp.
705
716
.
31.
Arnone
,
A.
,
Pacciani
,
R.
, and
Sestini
,
A.
,
1995
, “
Multigrid Computations of Unsteady Rotor–Stator Interaction Using the Navier–Stokes Equations
,”
J. Fluid. Eng.
,
117
(
Dec.
), pp.
647
652
.
32.
Arnone
,
A.
, and
Pacciani
,
R.
,
1997
, “
Numerical Prediction of Trailing Edge Wake Shedding
,” ASME Turbo Expo,
Orlando, FL
,
ASME Paper No. 97-GT-89
.
33.
Burberi
,
C.
,
Michelassi
,
V.
,
Scotti Del Greco
,
A.
,
Lorusso
,
S.
,
Tapinassi
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Validation of Steady and Unsteady CFD Strategies in the Design of Axial Compressors for Gas Turbine Engines
,”
Aerosp. Sci. Technol.
,
107
(
106307
), p.
106307
.
34.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries Inc.
,
La Canada
.
35.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid. Mech.
,
72
(
2
), pp.
331
340
.
36.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
.
37.
Benamadouche
,
S.
,
Jarrin
,
N.
,
Addad
,
Y.
, and
Laurence
,
D.
,
2006
, “
Synthetic Turbulent Inflow Conditions Based on a Vortex-Method for Large Eddy Simulation
,”
Progress Comput. Fluid Dyn.
,
6
(
1–3
), pp.
50
57
.
38.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Predicting High-Lift LP Turbine Cascades Flows Using Transition-Sensitive Turbulence Closures
,”
ASME J. Turbomach.
,
136
(
5
), p.
051007
.
You do not currently have access to this content.