Abstract

An improved passage-flow turning model (IPTM) was developed in this study to design high-performance forward-curved blades for squirrel-cage fans. The flow separation in blade passages and the corresponding fan performance were compared between IPTM and traditional methods through computational fluid dynamics (CFD). The results show that correcting the blade inlet angle, based on the zero-incidence design, is crucial to prevent separation of the passage mainstream from the blade pressure surface. The blade shape with second-order smoothness also exhibits the thinnest separation and highest efficiency when other design parameters remain constant. Considering these findings, the blades designed by IPTM outperform traditional blades with the same inlet and outlet angles. The optimal values of the turning radius R¯T and the decelerating factor of the leading half blade ɛ were determined based on the CFD results. The designed blade achieves high pressure when these two parameters satisfy R¯T=0.185ε+0.29175, while achieving high efficiency when they satisfy R¯T=0.31ε+0.4425. To confirm the advantages of IPTM, an optimal IPTM-based blade was manufactured and measured. The results indicated that the maximum increase in fan pressure and efficiency reaches 10% and 6%, respectively.

References

1.
Eck
,
B.
,
1973
,
Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans.
,
Pergamon Press
,
Oxford, UK
.
2.
Xiao
,
Q.
,
Wang
,
J.
,
Jiang
,
B.
,
Yang
,
W.
, and
Yang
,
X.
,
2021
, “
Multi-objective Optimization of Squirrel Cage Fan for Range Hood Based on Kriging Model
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
236
(
1
), pp.
219
232
.
3.
Zhou
,
S.
,
Zhou
,
H.
,
Yang
,
K.
,
Dong
,
H.
, and
Gao
,
Z.
,
2021
, “
Research on Blade Design Method of Multi-blade Centrifugal Fan for Building Efficient Ventilation Based on Hicks-Henne Function
,”
Sustain. Energy Technol. Assess.
,
43
(
1
), p.
100971
.
4.
Moore
,
J.
,
1967
, “
Effects of Coriolis on Turbulent Flow in Rotating Rectangular Channels
,”
PhD dissertation
,
London University Library
,
London
.
5.
Eckardt
,
D.
,
1976
, “
Detailed Flow Investigations Within a High-Speed Centrifugal Compressor Impeller
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
390
399
.
6.
Moore
,
J.
,
1973
, “
A Wake and an Eddy in a Rotating, Radial-Flow Passage—Part 1: Experimental Observations
,”
ASME J. Eng. Gas Turbines Power
,
95
(
3
), pp.
205
212
.
7.
Cau
,
G.
,
Mandas
,
N.
,
Manfrida
,
G.
, and
Nurzia
,
F.
,
1987
, “
Measurements of Primary and Secondary Flows in an Industrial Forward-Curved Centrifugal Fan
,”
ASME J. Fluids Eng.
,
109
(
4
), pp.
353
358
.
8.
Balje
,
O. E.
,
1978
, “
A Flow Model for Centrifugal Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
100
(
1
), pp.
148
158
.
9.
Galerkin
,
Y. B.
,
Zuev
,
A.
,
Seleznev
,
K.
, and
Strizhak
,
L. Y.
,
1973
, “
Test Designing Centrifugal Compressor Wheels According to a Stated Velocity Distribution
,”
Chem. Pet. Eng.
,
9
(
4
), pp.
306
312
.
10.
Cheng
,
X.
,
2003
, “
Research on Several Problems Relating to the Design of Centrifugal Fans With Forward Curved Blades
,”
Chin. J. Turbomach.
,
47
(
6
), pp.
3
12
.
11.
Johnston
,
J. P.
, and
Eide
,
S. A.
,
1976
, “
Turbulent Boundary Layers on Centrifugal Compressors Blades: Prediction of the Effects of Surface Curvature and Rotation
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
375
381
.
12.
Guo
,
X.
, and
Zhu
,
B.
,
1985
, “
Investigations on the Balde Shape of Centrifugal Impeller and Calculation of the Boundary Layer on the Blades
,”
J. Xi’an Jiaotong Univ.
,
19
(
6
), pp.
89
98
.
13.
Shen
,
T.
,
1980
, “
A Flow Model and Design Method of the Impeller of Forward-Swept Blades
,”
J. Qinghua Univ.
,
20
(
2
), pp.
37
50
.
14.
Raj
,
D.
, and
Swim
,
W. B.
,
1981
, “
Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of an fc Centrifugal Fan Rotor
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
393
399
.
15.
Kawahashi
,
M.
,
Satou
,
H.
,
Fujita
,
Y.
, and
Yamamoto
,
K.
,
2000
, “
Experimental Flow Analysis of a Multiblade Fan Being Used for Automobile Air-Conditioner
,”
FISITA World Automotive Congress
,
Seoul, South Korea
,
June 12–15
.
16.
Tremmel
,
M.
, and
Taulbee
,
D. B.
,
2008
, “
Calculation of the Time-Averaged Flow in Squirrel-Cage Blowers by Substituting Blades With Equivalent Forces
,”
ASME J. Turbomach.
,
130
(
3
), pp.
538
544
.
17.
Breviario
,
F.
,
Brivio
,
D.
,
Cardillo
,
L.
,
Corsini
,
A.
, and
Delibra
,
G.
,
2016
, “
Flow Survey of a Forward Curved Blades Centrifugal Fan for HVAC Applications
,”
ASME Turbo Expo: Turbomachinery Technical Conference & Exposition
,
Seoul, South Korea
,
June 13–17
.
18.
Younsi
,
M.
,
Bakir
,
F.
,
Kouidri
,
S.
, and
Rey
,
R.
,
2006
, “
2D and 3D Unsteady Flow in Squirrel-Cage Centrifugal Fan and Aeroacoustic Behavior
,”
ASME Joint U.S.-European Fluids Engineering Summer Meeting
,
Miami, FL
,
July 17–20, 2006
.
19.
Darvish
,
M.
,
Frank
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical and Experimental Study on the Tonal Noise Generation of a Radial Fan
,”
ASME J. Turbomach.
,
137
(
10
), p.
101005
.
20.
Liu
,
H.
,
Jiang
,
B.
,
Wang
,
J.
,
Yang
,
X.
, and
Xiao
,
Q.
,
2021
, “
Numerical and Experimental Investigations on Non-axisymmetric d-Type Inlet Nozzle for a Squirrel-Cage Fan
,”
Eng. Appl. Comput. Fluid Mech.
,
15
(
1
), pp.
363
376
.
21.
Li
,
X.
,
Liu
,
Z.
, and
Lin
,
Y.
,
2017
, “
Multipoint and Multiobjective Optimization of a Centrifugal Compressor Impeller Based on Genetic Algorithm
,”
Math. Probl. Eng.
,
2017
(
1
), pp.
1
18
.
22.
Lopez
,
D. I.
,
Ghisu
,
T.
, and
Shahpar
,
S.
,
2022
, “
Global Optimization of a Transonic Fan Blade Through AI-Enabled Active Subspaces
,”
ASME J. Turbomach.
,
144
(
1
), p.
011013
.
23.
DIN
,
2010
,
ISO 5801-2010: Industrial Fans – Performance Testing Using Standardized Airways.
,
Deutsches Institut für Normung e. V.
,
Berlin, Germany
.
24.
Gholamian
,
M.
,
Rao
,
G. K. M.
, and
Bhramara
,
P.
,
2013
, “
Numerical Investigation on Effect of Inlet Nozzle Size on Efficiency and Flow Pattern in Squirrel Cage Fans
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
227
(
8
), pp.
896
907
.
25.
Wen
,
X.
,
Mao
,
Y.
,
Yang
,
X.
, and
Qi
,
D.
,
2016
, “
Design Method for the Volute Profile of a Squirrel Cage Fan With Space Limitation
,”
ASME J. Turbomach.
,
138
(
8
), p.
081001
.
26.
Wang
,
K.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2019
, “
Numerical Investigation on Flow Mechanisms of a Squirrel Cage Fan
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
233
(
1
), pp.
3
16
.
27.
Biedermann
,
T. M.
,
Moutamassik
,
Y.
, and
Kameier
,
F.
,
2023
, “
Assessment of the Impeller/Volute Relationship of Centrifugal Fans From an Aerodynamic and Aeroacoustic Perspective
,”
ASME J. Turbomach.
,
145
(
8
), p.
081012
.
28.
Sohn
,
D.
,
Han
,
J.
,
Cho
,
Y. S.
, and
Im
,
S.
,
2013
, “
A Finite Element Scheme With the Aid of a New Carving Technique Combined With Smoothed Integration
,”
Comput. Methods Appl. Mech. Eng.
,
254
(
1
), pp.
42
60
.
29.
Kim
,
H. Y.
, and
Kim
,
H. G.
,
2021
, “
A Hexahedral-Dominant FE Meshing Technique Using Trimmed Hexahedral Elements Preserving Sharp Edges and Corners
,”
Eng. Comput.
,
37
(
4
), pp.
1
16
.
30.
Jiang
,
B.
,
Liu
,
H.
,
Li
,
B.
, and
Wang
,
J.
,
2018
, “
Effects of Cut Volute Profile on Squirrel Cage Fan Performance and Flow Field
,”
Adv. Mech. Eng.
,
10
(
3
), p.
1687814018766915
.
31.
Xiao
,
Q.
,
Shi
,
X.
,
Wu
,
L.
,
Wang
,
J.
,
Ding
,
Y.
, and
Jiang
,
B.
,
2021
, “
Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model
,”
Processes
,
9
(
9
), p.
1620
.
32.
ANSYS, Inc.
,
2019
,
ANSYS CFX Solver Theory Guide, Release 18.2 ed
,
Canonsburg, PA
.
33.
Jiang
,
B.
,
Wang
,
J.
,
Yang
,
X.
,
Wang
,
W.
, and
Ding
,
Y.
,
2019
, “
Tonal Noise Reduction by Unevenly Spaced Blades in a Forward-Curved-Blades Centrifugal Fan
,”
Appl. Acoust.
,
146
(
1
), pp.
172
183
.
34.
Bamberger
,
K.
,
Carolus
,
T.
,
Belz
,
J.
, and
Nelles
,
O.
,
2020
, “
Development, Validation, and Application of an Optimization Scheme for Impellers of Centrifugal Fans Using Computational Fluid Dynamics-Trained Metamodels
,”
ASME J. Turbomach.
,
142
(
11
), p.
111005
.
35.
Ding
,
Y.
,
Wang
,
J.
,
Jiang
,
B.
,
Xiao
,
Q.
,
Yang
,
X.
,
Wu
,
L.
, and
Xie
,
B.
,
2023
, “
Numerical Investigation of the Effect of Blade Distortion Laws on the Corner Flow Separation of the Axial-Flow Fan
,”
Aerosp. Sci. Technol.
,
138
(
1
), p.
108296
.
36.
Gullberg
,
P.
,
Löfdahl
,
L.
,
Adelman
,
S.
, and
Nilsson
,
P.
,
2009
, “A Correction Method for Stationary Fan CFD MRF Models,” No. 2009-01-0178.
37.
Gullberg
,
P.
,
Löfdahl
,
L.
,
Adelman
,
S.
, and
Nilsson
,
P.
,
2009
, “An Investigation and Correction Method of Stationary Fan CFD MRF Simulations,” No. 2009-01-3067.
38.
Franzke
,
R.
,
Sebben
,
S.
,
Bark
,
T.
,
Willeson
,
E.
, and
Broniewicz
,
A.
,
2019
, “
Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan
,”
Energies
,
12
(
15
), p.
2934
.
39.
Peng
,
W.
,
Li
,
G.
,
Geng
,
J.
, and
Yan
,
W.
,
2019
, “
A Strategy for the Partition of MRF Zones in Axial Fan Simulation
,”
Int. J. Vent.
,
18
(
1
), pp.
64
78
.
40.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
41.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “Turbulence Modeling Validation, Testing, and Development,” NASA Technical Memorandum.
42.
Darvish
,
M.
, and
Frank
,
S.
,
2012
, “
Toward the CFD Simulation of Sirocco Fans: From Selecting a Turbulence Model to the Role of Cell Shapes
,”
International Conference on Fan Noise, Technology and Numerical Methods (FAN 2012)
,
Senlis, France
,
Apr. 18–20
, pp.
1
12
.
You do not currently have access to this content.