Abstract

Corner separation is an inherently unsteady flow feature in an axial compressor cascade, and it significantly affects the aerodynamic performance of compressors. The flow field of a highly loaded compressor cascade at the Mach number of 0.59 under the moderate separation condition is simulated based on delayed detached eddy simulation. Comparisons of averaged flow field and transient flow field show that the three-dimensional corner separation flow is highly unsteady and composed of fine-scale vortex structures. The classical recognition of corner separation structures is a consequence of time-averaging. To better understand the contribution of unsteady structures to the averaged flow structures, the evolutions of flow fields in time series and the power spectrums are analyzed. A dominant periodic flow fluctuation is caused by the development of separating vortices with a characteristic frequency around 3500 Hz or at a Strouhal number of 0.75. Further, energy scales and spatiotemporal features of these dominant unsteady behaviors are analyzed using proper orthogonal decomposition and dynamic mode decomposition methods. Results show that the low-frequency behaviors mainly caused by the passage vortex at lower-span regions govern large-scale changes of separation flow in size and intensity and act with certain intermittency. The vortex developing mode around 3500 Hz prevails at higher regions affected by the concentrated shedding vortex. As the separating vortices dissipate approaching the midspan, the effect of the vortex developing mode on axial velocity fluctuation is reduced, although it dominates the pressure fluctuation with good stability in the whole passage.

References

1.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2007
, “
Interaction of Tip Clearance Flow and Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
129
(
4
), pp.
679
685
.
2.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2017
, “
Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Freestream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
.
3.
Taylor
,
J. V.
,
2019
, “
Separated Flow Topology in Compressors
,”
ASME J. Turbomach.
,
141
(
9
), p.
091014
.
4.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
5.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
6.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061101
.
7.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2017
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
8.
Li
,
W.
, and
Liu
,
Y.
,
2022
, “
Numerical Investigation of Corner Separation Flow Using Spalart-Allmaras Model With Various Modifications
,”
Aerosp. Sci. Technol.
,
127
, p.
107682
.
9.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
10.
Liu
,
Y.
,
Tang
,
Y.
,
Scillitoe
,
A. D.
, and
Tucker
,
P. G.
,
2020
, “
Modification of Shear Stress Transport Turbulence Model Using Helicity for Predicting Corner Separation Flow in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
142
(
2
), p.
021004
.
11.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS And ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
, Paper No.
GT2015
43975
.
12.
Liu
,
Y.
,
Yan
,
H.
,
Liu
,
Y.
,
Lu
,
L.
, and
Li
,
Q.
,
2016
, “
Numerical Study of Corner Separation in a Linear Compressor Cascade Using Various Turbulence Models
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
639
652
.
13.
Yan
,
H.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Turbulence Anisotropy Analysis in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
91
, pp.
241
254
.
14.
Dawkins
,
I.
,
Taylor
,
J.
,
Ottavy
,
X.
, and
Miller
,
R.
,
2022
, “
The Unsteady Topology of Corner Separations
,”
ASME J. Turbomach.
,
144
(
11
), p.
111001
.
15.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
16.
Monier
,
J. F.
,
Gao
,
F.
,
Boudet
,
J.
, and
Shao
,
L.
,
2020
, “
Turbulence Modelling Analysis in a Corner Separation Flow
,”
Comput. Fluids
,
213
, p.
104745
.
17.
Liu
,
Y.
,
Zhong
,
W.
, and
Tang
,
Y.
,
2021
, “
On the Relationships Between Different Vortex Identification Methods Based on Local Trace Criterion
,”
Phys. Fluids
,
33
(
10
), p.
105116
.
18.
Wang
,
H.
,
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
Entropy Analysis of the Interaction Between the Corner Separation and Wakes in a Compressor Cascade
,”
Entropy
,
19
(
7
), p.
324
.
19.
Wang
,
Z. N.
, and
Yuan
,
X.
,
2013
, “
Unsteady Mechanisms of Compressor Corner Separation Over a Range of Incidences Based on Hybrid LES/RANS
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, Paper No.
GT2013
95300
.
20.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
21.
Vitkovicova
,
R.
,
Yokoi
,
Y.
, and
Hyhlik
,
T.
,
2020
, “
Identification of Structures and Mechanisms in a Flow Field by POD Analysis for Input Data Obtained From Visualization and PIV
,”
Exp. Fluids
,
61
(
8
), pp.
1
21
.
22.
Charkrit
,
S.
,
Shrestha
,
P.
, and
Liu
,
C.
,
2020
, “
Liutex Core Line and POD Analysis on Hairpin Vortex Formation in Natural Flow Transition
,”
J. Hydrodyn.
,
32
(
6
), pp.
1109
1121
.
23.
Luo
,
X.
,
Qian
,
Z.
,
Wang
,
X.
, and
Yu
,
A.
,
2022
, “
Mode Vortex and Turbulence in Ventilated Cavitation Over Hydrofoils
,”
Int. J. Multiph. Flow
,
157
, p.
104252
.
24.
Kou
,
J.
, and
Zhang
,
W.
,
2019
, “
Dynamic Mode Decomposition with Exogenous Input for Data-Driven Modeling of Unsteady Flows
,”
Phys. Fluids
,
31
(
5
), p.
057106
.
25.
Taira
,
K.
,
Hemati
,
M. S.
,
Brunton
,
S. L.
,
Sun
,
Y.
,
Duraisamy
,
K.
,
Bagheri
,
S.
,
Dawson
,
S. T. M.
, and
Yeh
,
C.
,
2020
, “
Modal Analysis of Fluid Flows: Applications and Outlook
,”
AIAA J.
,
58
(
3
), pp.
998
1022
.
26.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propagation
, pp.
166
178
.
27.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
28.
Sarmast
,
S.
,
Dadfar
,
R.
,
Mikkelsen
,
R. F.
,
Schlatter
,
P.
,
Ivanell
,
S.
,
Sørensen
,
J. N.
, and
Henningson
,
D. S.
,
2014
, “
Mutual Inductance Instability of the Tip Vortices Behind a Wind Turbine
,”
J. Fluid Mech.
,
755
, pp.
705
731
.
29.
Kou
,
J.
, and
Zhang
,
W.
,
2017
, “
An Improved Criterion to Select Dominant Modes From Dynamic Mode Decomposition
,”
Eur. J. Mech. B-Fluids
,
62
, pp.
109
129
.
30.
Wynn
,
A.
,
Pearson
,
D. S.
,
Ganapathisubramani
,
B.
, and
Goulart
,
P. J.
,
2013
, “
Optimal Mode Decomposition for Unsteady Flows
,”
J. Fluid Mech.
,
733
, pp.
473
503
.
31.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.
32.
Yang
,
Y.
, and
Ma
,
H.
,
2022
, “
Analysis of Tip Leakage Flow Unsteadiness in a Transonic Turbine Cascade Using Data-Driven Modal Decomposition Methods
,”
Phys. Fluids
,
34
(
9
), p.
095129
.
33.
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2016
, “
Flow Phenomena Leading to Surge in a Centrifugal Compressor
,”
Energy
,
103
, pp.
572
587
.
34.
Bian
,
X.
,
Wang
,
Q.
,
Su
,
X.
, and
Yuan
,
X.
,
2020
, “
Interaction Mechanisms of Shock Waves With the Boundary Layer and Wakes in a Highly-Loaded NGV Using Hybrid RANS/LES
,”
Chin. J. Aeronaut.
,
33
(
1
), pp.
149
160
.
35.
An
,
G.
,
Wu
,
Y.
,
Lang
,
J.
,
Chen
,
Z.
, and
Zhou
,
X.
,
2022
, “
Investigation of Flow Unsteadiness in a Highly-Loaded Compressor Cascade Using a Dynamic Mode Decomposition Method
,”
Chin. J. Aeronaut.
,
35
(
5
), pp.
275
290
.
36.
Li
,
R.
,
Gao
,
L.
,
Zhao
,
L.
,
Ma
,
C.
, and
Lin
,
S.
,
2019
, “
Dominating Unsteadiness Flow Structures in Corner Separation Under High Mach Number
,”
AIAA J.
,
57
(
7
), pp.
2923
2932
.
37.
Li
,
R.
,
Gao
,
L.
,
Ma
,
C.
,
Lin
,
S.
, and
Zhao
,
L.
,
2020
, “
Corner Separation Dynamics in a High-Speed Compressor Cascade Based on Detached-Eddy Simulation
,”
Aerosp. Sci. Technol.
,
99
, p.
105730
.
38.
Tang
,
Y.
,
Liu
,
Y.
,
Lu
,
L.
,
Lu
,
H.
, and
Wang
,
M.
,
2020
, “
Passive Separation Control With Blade-End Slots in a Highly Loaded Compressor Cascade
,”
AIAA J.
,
58
(
1
), pp.
85
97
.
39.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Evaluation of Compressor Blading With Blade End Slots and Full-Span Slots in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121002
.
40.
ANSYS
,
2015
,
ANSYS FLUENT 16.0: User’s Guide
,
Ansys Inc.
,
Canonsburg, PA
.
41.
Tucker
,
P. G.
,
2014
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
,
Dordrecht, The Netherlands
.
42.
Kang
,
S.
, and
Hirsch
,
C.
,
1991
, “
Three Dimensional Flow in a Linear Compressor Cascade at Design Conditions
,”
Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 3–6
, Paper No.
91-GT-114
.
43.
Liu
,
C.
,
Gao
,
Y.
,
Tian
,
S.
, and
Dong
,
X.
,
2018
, “
Rortex—A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions
,”
Phys. Fluids
,
30
(
3
), p.
035103
.
44.
Tian
,
S.
,
Gao
,
Y.
,
Dong
,
X.
, and
Liu
,
C.
,
2018
, “
Definitions of Vortex Vector and Vortex
,”
J. Fluid Mech.
,
849
, pp.
312
339
.
45.
Gao
,
Y.
, and
Liu
,
C.
,
2018
, “
Rortex and Comparison with Eigenvalue-Based Vortex Identification Criteria
,”
Phys. Fluids
,
30
(
8
), p.
085107
.
46.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
47.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2013
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.
48.
DMDSP—Sparsity-Promoting Dynamic Mode Decomposition
,” http://www.ece.umn.edu/users/mihailo//software/dmdsp/
You do not currently have access to this content.