Abstract

In this final paper of a three-part series, we apply the numerical test rig based on a high-order discontinuous Galerkin scheme to the MTU T161 low-pressure turbine with diverging end walls at off-design Reynolds number of 90,000, Mach number of 0.6, and inflow angle of 41 deg. The inflow end wall boundary layers are prescribed in accordance with the experiment. Validation of the setup is shown against recent numerical references and the corresponding experimental data. Additionally, we propose and conduct a purely numerical experiment with upstream bar wake generators at a Strouhal number of 1.25, which is well above what was possible in the experiment. We discuss the flow physics at midspan and in the end wall region and highlight the influence of the wakes from the upstream row on the complex secondary flow system using instantaneous flow visualization, phase averages, and modal decomposition techniques.

References

1.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
2.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2016
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
3.
Langston
,
L.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
11
26
.
4.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2015
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
5.
Koschichow
,
D.
,
Ciorciari
,
R.
,
Fröhlich
,
J.
, and
Niehuis
,
R.
,
2015
, “
Analysis of the Influence of Periodic Passing Wakes on the Secondary Flow Near the Endwall of a Linear LPT Cascade Using DNS and U-RANS
,”
Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
.
6.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Large-Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,”
ASME J. Turbomach.
,
141
(
12
), p.
121005
.
7.
Iyer
,
A.
,
Abe
,
Y.
,
Vermeire
,
B.
,
Bechlars
,
P.
,
Baier
,
R.
,
Jameson
,
A.
,
Witherden
,
F.
, and
Vincent
,
P.
,
2021
, “
High-Order Accurate Direct Numerical Simulation of Flow Over a MTU-T161 Low Pressure Turbine Blade
,”
Comput. Fluids
,
226
, p.
104989
.
8.
Donovan
,
M. H.
,
Rumpfkeil
,
M. P.
,
Marks
,
C. R.
,
Robison
,
Z.
, and
Gross
,
A.
,
2023
, “
Low Reynolds Number Effects on the Endwall Flow Field in a High-Lift Turbine Passage
,”
ASME J. Turbomach.
,
145
(
3
), p.
031006
.
9.
Robison
,
Z.
, and
Gross
,
A.
,
2021
, “
Large-Eddy Simulation of Low-Pressure Turbine Cascade With Unsteady Wakes
,”
Aerospace
,
8
(
7
), p.
184
.
10.
Robison
,
Z.
, and
Gross
,
A.
,
2022
, “
Comparative Numerical Investigation of Wake Effect on Low-Pressure Turbine Endwall Flow
,”
Aerosp. Sci. Technol.
,
131
, p.
107970
.
11.
Floryan
,
J. M.
,
1986
, “
Görtler Instability of Boundary Layers Over Concave and Convex Walls
,”
Phys. Fluids
,
29
(
8
), pp.
2380
2387
.
12.
Gross
,
A.
,
Marks
,
C. R.
,
Sondergaard
,
R.
,
Bear
,
P. S.
, and
Mitch Wolff
,
J.
,
2018
, “
Experimental and Numerical Characterization of Flow Through Highly Loaded Low-Pressure Turbine Cascade
,”
J. Propul. Power
,
34
(
1
), pp.
27
39
.
13.
Gier
,
J.
,
Raab
,
I.
,
Schröder
,
T.
,
Hübner
,
N.
,
Franke
,
M.
,
Kennepohl
,
F.
,
Lippl
,
F.
,
Germain
,
T.
, and
Enghardt
,
L.
,
2007
, “
Preparation of Aero Technology for New Generation Aircraft Engine LP Turbines
,”
1st CEAS European Air and Space Conference
,
Berlin, Germany
,
Sept. 10–13
.
14.
Müller-Schindewolffs
,
C.
,
Baier
,
R.-D.
,
Seume
,
J. R.
, and
Herbst
,
F.
,
2017
, “
Direct Numerical Simulation Based Analysis of RANS Predictions of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
8
), p.
081006
.
15.
Fard Afshar
,
N.
,
Kozulovic
,
D.
,
Henninger
,
S.
,
Deutsch
,
J.
, and
Bechlars
,
P.
,
2023
, “
Turbulence Anisotropy Analysis at the Middle Section of a Highly Loaded3D Linear Turbine Cascade Using Large Eddy Simulation
,”
J. Glob. Power Propuls. Soc.
,
7
, pp.
71
84
.
16.
Bergmann
,
M.
,
Gölden
,
R.
, and
Morsbach
,
C.
,
2018
, “
Numerical Investigation of Split Form Nodal Discontinuous Galerkin Schemes for the Implicit LES of a Turbulence Channel Flow
,”
7th European Conference on Computational Fluid Dynamics
,
Glasgow, UK
,
June 11–15
.
17.
Bergmann
,
M.
,
Morsbach
,
C.
, and
Ashcroft
,
G.
,
2020
, “Assessment of Split Form Nodal Discontinuous Galerkin Schemes for the LES of a Low Pressure Turbine Profile,”
Direct and Large Eddy Simulation XII
,
M.
García-Villalba
,
H.
Kuerten
, and
M. V.
Salvetti
, eds.,
Springer International Publishing
,
Cham
, pp.
365
371
.
18.
Morsbach
,
C.
,
Bergmann
,
M.
,
Tosun
,
A.
,
Kügeler
,
E.
, and
Franke
,
M.
,
2022
, “
Large Eddy Simulation of a Low Pressure Turbine Cascade With Turbulent End Wall Boundary Layers
,”
DLES13—Direct and Large Eddy Simulation
,
Udine, Italy
,
Oct. 26–28
.
19.
Martinstetter
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2010
, “
Passive Boundary Layer Control on a Highly Loaded Low Pressure Turbine Cascade
,”
Turbo Expo: Power for Land, Sea, and Air, Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
, pp.
1315
1326
.
20.
Rosenzweig
,
M.
,
Kozul
,
M.
,
Sandberg
,
R.
,
Pacciani
,
R.
, and
Marconcini
,
M.
,
2023
, “
High-Fidelity Simulations and RANS Analysis of a Low-Pressure Turbine Cascade in a Spanwise-Diverging Gas Path—End-Wall Flow Analysis and Loss Generation Mechanisms
,”
Proceedings of ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
, Paper No. GT2023-101039.
21.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow Turbul. Combus.
,
93
(
1
), pp.
63
92
.
22.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
23.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
24.
Morsbach
,
C.
, and
Bergmann
,
M.
,
2020
, “Critical Analysis of the Numerical Setup for the Large-Eddy Simulation of the Low-Pressure Turbine Profile T106C,”
Direct and Large Eddy Simulation XII
,
García-Villalba
,
M.
,
Kuerten
,
H.
, and
Salvetti
,
M. V.
, eds.,
Springer International Publishing
,
Cham
, pp.
343
348
.
25.
Schlatter
,
P.
, and
Örlü
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
26.
Weiss
,
J.
,
2019
, “
A Tutorial on the Proper Orthogonal Decomposition
,”
AIAA Aviation 2019 Forum
,
Dallas, TX
,
June 17–21
.
27.
Dawkins
,
I.
,
Taylor
,
J.
,
Ottavy
,
X.
, and
Miller
,
R.
,
2022
, “
The Unsteady Topology of Corner Separations
,”
ASME J. Turbomach.
,
144
(
11
), p.
111001
.
28.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2017
, “
Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine
,”
Int. J. Heat Fluid Flow
,
63
, pp.
149
157
.
You do not currently have access to this content.