Abstract

In this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.

References

1.
Leggett
,
J.
,
Priebe
,
S.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Shabbir
,
A.
,
2016
, “
Detailed Investigation of RANS and LES Predictions of Loss Generation in an Axial Compressor Cascade at Off Design Incidences
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery
,
Seoul, South Korea
,
June 13–17
.
2.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
3.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid. Mech.
,
446
, pp.
199
228
.
4.
Moura
,
R. C.
,
Sherwin
,
S. J.
, and
Peiró
,
J.
,
2015
, “
Linear Dispersion-Diffusion Analysis and Its Application to Under-Resolved Turbulence Simulations Using Discontinuous Galerkin Spectral/HP Methods
,”
J. Comput. Phys.
,
298
(
C
), pp.
695
710
.
5.
Bergmann
,
M.
,
Drapkina
,
S.
,
Ashcroft
,
G.
, and
Frey
,
C.
,
2016
, “
A Comparison of Various Nodal Discontinuous Galerkin Methods for the 3D Euler Equations
,”
Proceedings of the Eighth European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete Island, Greece
,
June 5–10
.
6.
Carpenter
,
M. H.
,
Fisher
,
T. C.
,
Nielsen
,
E. J.
, and
Frankel
,
S. H.
,
2014
, “
Entropy Stable Spectral Collocation Schemes for the Navier–Stokes Equations: Discontinuous Interfaces
,”
SIAM J. Sci. Comput.
,
36
(
5
), pp.
B835
B867
.
7.
Gassner
,
G. J.
,
Winters
,
A. R.
, and
Kopriva
,
D. A.
,
2016
, “
Split Form Nodal Discontinuous Galerkin Schemes With Summation-by-Parts Property for the Compressible Euler Equations
,”
J. Comput. Phys.
,
327
, pp.
39
66
.
8.
Bergmann
,
M.
,
Morsbach
,
C.
, and
Franke
,
M.
,
2019
, “Implicit LES of a Turbulent Channel Flow With High-Order Discontinuous Galerkin and Finite Volume Discretization,”
Direct and Large-Eddy Simulation XI. ERCOFTAC Series
, Vol.
25
,
M.
Salvetti
,
V.
Armenio
,
J.
Fröhlich
,
B.
Geurts
, and
H.
Kuerten
, eds.,
Springer International Publishing
,
Pisa, Italy
, pp.
61
67
.
9.
Bergmann
,
M.
,
Morsbach
,
C.
, and
Ashcroft
,
G.
,
2020
, “Assessment of Split Form Nodal Discontinuous Galerkin Schemes for the LES of a Low Pressure Turbine Profile,”
Direct and Large Eddy Simulation XII. DLES 2019. ERCOFTAC Series
, Vol.
27
,
M.
García-Villalba
,
H.
Kuerten
, and
M.
Salvetti
, eds.,
Springer International Publishing
,
Basel, Switzerland
, pp.
365
371
.
10.
Mavriplis
,
C.
,
1989
, “
Nonconforming Discretizations and A-Posteriori Error Estimators for Adaptive Spectral Element Techniques
,” Ph.D. thesis, Massachusetts Institute of Technology, Boston, MA.
11.
Kopriva
,
D. A.
, and
Kolias
,
J. H.
,
1996
, “
A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows
,”
J. Comput. Phys.
,
125
, pp.
244
261
.
12.
Kopriva
,
D. A.
,
Woodruff
,
S. L.
, and
Hussaini
,
M. Y.
,
2002
, “
Computation of Electromagnetic Scattering With a Non-Conforming Discontinuous Spectral Element Method
,”
Int. J. Numer. Meth. Eng.
,
53
(
1
), pp.
105
122
.
13.
Stadtmüller
,
P.
, and
Fottner
,
L.
,
2001
, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
New Orleans, LA
,
June 4–7
.
14.
Stadtmüller
,
P.
,
2001
, “
Investigation of Wake-Induced Transition on the LP Turbine Cascade T106D-EIZ
,” Universität der Bundeswehr München, Munich, Germany, Version 1.1.
15.
Kopriva
,
D. A.
, and
Gassner
,
G. J.
,
2016
, “
Geometry Effects in Nodal Discontinuous Galerkin Methods on Curved Elements That Are Provably Stable
,”
Appl. Math. Comput.
,
272
, pp.
274
290
.
16.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations
,”
J. Comput. Phys.
,
138
(
2
), pp.
251
285
.
17.
Kennedy
,
C. A.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.
18.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
19.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-reflecting Boundary Conditions For Both Steady And Unsteady Flow Simulations in Turbomachinery Applications
,”
Proceedings of the Eighth European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete Island, Greece
,
June 5–10
.
20.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow Turbul. Combus.
,
93
(
1
), pp.
63
92
.
21.
Morsbach
,
C.
, and
Franke
,
M.
,
2019
, “Analysis of a Synthetic Turbulence Generation Method for Periodic Configurations,”
Direct and Large-Eddy Simulation XI
,
M. V.
Salvetti
,
V.
Armenio
,
J.
Fröhlich
,
B. J.
Geurts
, and
H.
Kuerten
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
169
174
.
22.
Matha
,
M.
,
Morsbach
,
C.
, and
Bergmann
,
M.
,
2018
, “
A Comparison of Methods for Introducing Synthetic Turbulence
,”
7th European Conference on Computational Fluid Dynamics
,
Glasgow, UK
,
June 11–15
.
23.
Leyh
,
S.
, and
Morsbach
,
C.
,
2020
, “The Coupling of a Synthetic Turbulence Generator With Turbomachinery Boundary Conditions,”
Direct and Large Eddy Simulation XII. DLES 2019. ERCOFTAC
, Vol.
27
,
M.
García-Villalba
,
H.
Kuerten
, and
M.
Salvetti
, eds.,
Springer International Publishing
,
Basel, Switzerland
, pp.
349
355
.
24.
Karypis
,
G.
, and
Kumar
,
V.
,
1998
, “
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
359
392
.
25.
Yang
,
H.
,
Nürnberger
,
D.
,
Nicke
,
E.
, and
Weber
,
A.
,
2003
, “
Numerical Investigation of Casing Treatment Mechanisms With a Conservative Mixed-Cell Approach
,” ASME IGTI, p.
2003-GT-38483
.
26.
Yang
,
H.
,
Nürnberger
,
D.
, and
Kersken
,
H.-P.
,
2006
, “
Towards Excellence in Turbomachinery Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
128
(
2
), pp.
390
402
.
27.
Silva
,
G. H. C.
,
Riche
,
R. L.
,
Molimard
,
J.
, and
Vautrin
,
A.
,
2009
, “
Exact and Efficient Interpolation Using Finite Elements Shape Functions
,”
Eur. J. Comput. Mech.
,
18
(
3–4
), pp.
307
331
.
28.
Brachet
,
M. E.
,
Meiron
,
D. I.
,
Orszag
,
S. A.
,
Nickel
,
B. G.
,
Morf
,
R. H.
, and
Frisch
,
U.
,
1983
, “
Small-Scale Structure of the Taylor-Green Vortex
,”
J. Fluid. Mech.
,
130
, pp.
411
452
.
29.
Hillewaert
,
K.
,
Hartmann
,
R.
,
Leicht
,
T.
,
Couaillier
,
V.
,
Wang
,
Z. J.
, and
Cagnone
,
J. S.
,
2016
, “
Summary and Conclusions of the 4th International Workshop on High Order CFD Methods
,”
Proceedings of the Eighth European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete Island, Greece
,
June 5–10
.
30.
Beck
,
A. D.
,
Flad
,
D. G.
,
Tonhäuser
,
C.
,
Gassner
,
G. J.
, and
Munz
,
C. -D.
,
2016
, “
On the Influence of Polynomial De-Aliasing on Subgrid Scale Models
,”
Flow Turbul. Combust.
,
97
(
2
), pp.
475
511
.
31.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
32.
Cardamone
,
P.
,
Stadtmüller
,
P.
, and
Fottner
,
L.
,
2002
, “
Numerical Investigation of the Wake-Boundary Layer Interaction on a Highly Loaded LP Turbine Cascade Blade
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2002, Parts A and B
,
Amsterdam, The Netherlands
,
June 3–6, 2002
.
33.
Pecnik
,
R.
,
Sanz
,
W.
, and
Pieringer
,
P.
,
2004
, “
Numerical Investigation of Unsteady Boundary Layer Transition Induced by Periodically Passing Wakes With an Intermittency Transport Equation
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 4: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
.
34.
Schwarze
,
M.
, and
Niehuis
,
R.
,
2010
, “
Numerical Simulation of a Highly Loaded LPT Cascade With Strong Suction Side Separation Under Periodically Unsteady Inflow Conditions
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
.
35.
Weber
,
A.
, and
Sauer
,
M.
,
2016
, “PyMesh – Template Documentation,” German Aerospace Center (DLR), Institute of Propulsion Technology, Linder Hoehe, Cologne, Germany, Technical Report DLR-IB-AT-KP-2016-34.
36.
Piomelli
,
U.
, and
Chasnov
,
J. R.
,
1996
,
Large-Eddy Simulations: Theory and Applications
,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
269
336
.
37.
Wagner
,
C.
,
Hüttle
,
T.
, and
Sagaut
,
P.
,
2007
,
Large-Eddy Simulation for Acoustics
,
Cambridge Aerospace Series
,
Cambridge University Press
, Cambridge, UK.
38.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities
,”
Recommended Practices, Future Res., AIAA J.
,
48
(
8
), pp.
1772
1784
.
39.
Lakshminarayana
,
B.
, and
Poncet
,
A.
,
1974
, “
A Method of Measuring Three-Dimensional Rotating Wakes Behind Turbomachinery Rotors
,”
ASME J. Fluids Eng.
,
96
(
2
), pp.
87
91
.
40.
Stadtmüller
,
P.
,
2002
, “Grenzschichtentwicklung und Verlustverhalten von hochbelasteten Turbinengittern unter dem Einfluß periodisch instationärer Zuströmung,” Ph.D. thesis, Bundeswehr University, Munich, Germany.
41.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
42.
Kiock
,
R.
,
Laskowski
,
G.
, and
Hoheisel
,
H.
,
1982
, Die Erzeugung höherer Turbulenzgrade in der Messstrecke des Hochgeschwindigkeits-Gitterwindkanals, Braunschweig, zur Simulation turbomaschinenähnlicher Bedingungen, Forschungsbericht, Wiss. Berichtswesen d. DFVLR.
43.
Brandt
,
H.
,
1998
, “
Untersuchung des Grenzschichtumschlages an einem hochbelasteten Turbinengitter unter inhomogenen und instationären Zuströmbedingungen
,” Ph.D. thesis, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr München, Munich, Germany.
44.
Zieße
,
M.
,
Müller-Schindewolffs
,
C.
,
Wein
,
L.
,
Seume
,
J.
, and
Herbst
,
F.
,
2020
, “
Validation of a Synthetic-Eddy Method for Modelling Incoming Wakes in Scale-Resolving Simulations of Turbomachinery Cascades
,”
Proceedings of Global Power and Propulsion Society
,
Chania, Greece
,
Sept. 7–9
.
45.
Dürrwächter
,
J.
,
Kurz
,
M.
,
Kopper
,
P.
,
Kempf
,
D.
,
Munz
,
C.-D.
, and
Beck
,
A.
,
2021
, “
An Efficient Sliding Mesh Interface Method for High-Order Discontinuous Galerkin Schemes
,”
Comput. Fluid.
,
217
, p.
104825
.
You do not currently have access to this content.