Abstract

This article presents conceptual design guidelines and results for a tail-integrated propulsion system for a turbo-electric civil transport aircraft with boundary layer ingestion (BLI). The aerodynamic performance goal is separation-free and shock-free operation at cruise with fuel burn reduction, compared with a baseline conventional aircraft for the same mission. The assessment of BLI benefits is based on calculations using CFD and TASOPT software, both to characterize the design challenges and to establish the physical mechanisms for resolving these challenges. The guidelines include a “horseshoe” inlet to accept the non-uniform flow without incurring separation, a nacelle profile similar to supercritical airfoils to reduce shock strength, and an annular nozzle to eliminate flow separation between tail-BLI propulsors. The conceptual design has nine BLI propulsors with electric fans on an axisymmetric tail of a single-aisle aircraft. The fans are powered by twin underwing turbofans. The estimated benefit of the tail-BLI, twin underwing turbofan aircraft is 10.4% in Payload-Range Fuel Consumption (PRFC) at a cruise Mach number of 0.8, compared to a baseline twin underwing turbofan configuration. Sensitivity studies further show that a 1% increase in installed (i.e., with BLI) fan isentropic efficiency translates to 0.8% rise in PRFC benefit.

References

1.
Drela
,
M.
,
2011
, “
Development of the D8 Transport Configuration
,” 29th AIAA Applied Aerodynamics Conference
AIAA 2011-3970
.
2.
Hall
,
D. K.
,
Greitzer
,
E. M.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S. A.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.
3.
Goldberg
,
C.
,
Nalianda
,
D.
,
Pilidis
,
P.
, and
Singh
,
R.
,
2017
, “
Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Off-Design
,” 53rd AIAA/SAE/ASEE Joint Propulsion Conference,
AIAA 2017-5055
.
4.
Tse
,
T. S.
, and
Hall
,
C. A.
,
2023
, “
Aerodynamics and Power Balance of a Distributed Aft-Fuselage Boundary Layer Ingesting Aircraft
,”
Aerospace
,
10
(
2
), p.
122
.
5.
Castillo Pardo
,
A.
, and
Hall
,
C. A.
,
2022
, “
Effects of Sideslip Direction on a Rear Fuselage Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
144
(
12
), p.
121012
.
6.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S
,
2023
, “
Mitigation of Boundary Layer Ingestion Circumferential Distortion Using Nonaxisymmetric Fan Exit Guide Vanes
,”
ASME J. Turbomach.
,
145
(
3
), p.
031008
.
7.
Drela
,
M.
,
2020
, “TASOPT 2.00 Transport Aircraft System OPTimization Technical Description.”
8.
Drela
,
M.
,
2009
, “
Power Balance in Aerodynamic Flows
,”
AIAA. J.
,
47
(
7
), pp.
1761
1771
.
9.
Allmaras
,
S. R.
,
Johnson
,
F. T.
, and
Spalart
,
P. R.
,
2012
, “
Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model
,”
Seventh International Conference on Computational Fluid Dynamics (ICCFD7)
,
Big Island, HI
,
July 9–13
.
10.
Marble
,
F. E.
,
1964
, “Three-Dimensional Flow in Turbomachines,”
High Speed Aerodynamics and Jet Propulsion
,
W. R.
Hawthorne
, and
W. T.
Olson
, eds.,
Princeton University Press
,
Princeton, NJ
, pp.
83
166
.
11.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods. Appl. Mech. Eng.
,
32
(
1
), pp.
199
259
.
12.
Glasby
,
R. S.
, and
Erwin
,
J. T.
,
2016
, “
Introduction to COFFE: The Next-generation HPCMP CREATE™-AV CFD Solver
,” 55th AIAA Aerospace Sciences Meeting,
AIAA 2016-0567
.
13.
Galbraith
,
M. C.
,
Allmaras
,
S. R.
, and
Darmofal
,
D. L.
,
2015
, “
A Verification Driven Process for Rapid Development of CFD Software
,” 53rd AIAA Aerospace Sciences Meeting,
AIAA 2015-0818
.
14.
Galbraith
,
M. C.
,
Allmaras
,
S. R.
, and
Darmofal
,
D. L.
,
2018
, “
SANS RANS Solutions for 3D Benchmark Configurations
,” 2018 AIAA Aerospace Sciences Meeting,
AIAA 2018-1570
.
15.
Ursachi
,
C.-I.
,
Galbraith
,
M. C.
,
Allmaras
,
S. R.
, and
Darmofal
,
D. L.
,
2021
, “
Output-Based Adaptive Reynolds-Averaged Navier–Stokes Higher-Order Finite Element Solutions on a Multielement Airfoil
,”
AIAA. J.
,
59
(
7
), pp.
2532
2545
.
16.
Galbraith
,
M. C.
,
Ursachi
,
C.-I.
,
Chandel
,
D.
,
Allmaras
,
S. R.
,
Darmofal
,
D. L.
,
Glasby
,
R. S.
,
Stefanski
,
D. L.
,
Taylor Erwin
,
K. R.
, and
Alonso
,
J. J.
,
2022
, “
Comparing Multi-Element Airfoil Flow Solutions Using Multiple Solvers with Output-Based Adapted Meshes
,”
AIAA. J.
,
60
(
4
), pp.
2629
2643
.
17.
Marcum
,
D. L.
, and
Weatherill
,
N. P.
,
1995
, “
Unstructured Grid Generation Using Iterative Point Insertion and Local Reconnection
,”
AIAA. J.
,
33
(
9
), pp.
1619
1625
.
18.
Marcum
,
D. L.
,
1998
, “Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection,”
The Handbook of Grid Generation
,
J. F.
Thompson
,
B.
Soni
, and
N. P.
Weatherill
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
503
533
.
19.
Marcum
,
D. L.
, and
Gaither
,
J. A.
,
1999
, “
Unstructured Surface Grid Generation Using Global Mapping and Physical Space Approximation
,”
8th International Meshing Roundtable
,
South Lake Tahoe, CA
,
Oct. 10–13
, pp.
397
406
.
20.
Chen
,
Z.
,
2022
, “
A Tail-Integrated Boundary-Layer Ingesting Propulsion System for Turbo-Electric Aircraft
,” Master’s thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics.
21.
Nikolaidis
,
T.
,
Jafari
,
S.
,
Bosak
,
D.
, and
Pilidis
,
P.
,
2020
, “
Exchange Rate Analysis for Ultra High Bypass Ratio Geared Turbofan Engines
,”
Appl. Sci.
,
10
(
21
), p.
7945
.
22.
Pagès
,
V.
,
Duquesne
,
P.
,
Aubert
,
S.
,
Blanc
,
L.
,
Ferrand
,
P.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2022
, “
UHBR Open-Test-Case Fan ECL5/CATANA
,”
Int. J. Turbomach. Propuls. Power
,
7
(
2
), p.
17
.
23.
Coles
,
D.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid. Mech.
,
1
(
2
), pp.
191
226
.
24.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
25.
Chen
,
G. T.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
,
1987
, “
Enhancing Compressor Distortion Tolerance by Asymmetric Stator Control
,” 23rd Joint Propulsion Conference,
AIAA 1987–2093
.
You do not currently have access to this content.