Abstract

Effects of low incoming freestream turbulence level (Tu < 1%) and surface roughness on the transition of flat-plate boundary layers under a high-lift airfoil pressure gradient have been investigated. Time-resolved streamwise and wall-normal velocity fields with surface roughness values of Ra/C = 0.065 × 10−5, 4.417 × 10−5, and 7.428 × 10−5 have been measured at a fixed Reynolds number of 5.2 × 105 and freestream turbulence intensity of 0.2%. For the reference smooth surface of Ra/C = 0.065 × 10−5, a laminar separation bubble forms from about 64% to 83% of the chord length. Increasing surface roughness has little impact on the laminar boundary layer separation onset but reduces the height and length of the separation bubble and induces earlier transition. For Ra/C = 4.417 × 10−5, displacement thickness during transition is slightly thinner and the overall momentum deficit is slightly lower than those for Ra/C = 0.065 × 10−5. For Ra/C = 7.428 × 10−5, the separation bubble becomes hardly visible as the transition mode approaches the attached mode, and turbulent mixing by the wall-bounded turbulence becomes dominant. In addition, the portion of turbulent wetted area increases due to earlier transition, and momentum deficit increases more rapidly in the turbulent wetted area. Thus, the overall momentum deficit for Ra/C = 7.428 × 10−5 is larger than that for Ra/C = 0.065 × 10−5.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
2.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
3.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
4.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
5.
Hughes
,
J. D.
, and
Walker
,
G. J.
,
2001
, “
Natural Transition Phenomena on an Axial Compressor Blade
,”
ASME J. Turbomach.
,
123
(
2
), pp.
392
401
.
6.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 2: Turbulence Spectra
,”
ASME J. Turbomach.
,
124
(
4
), pp.
656
664
.
7.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
8.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
9.
Tarada
,
F.
, and
Suzuki
,
M.
,
1993
, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol. 78897, p.
V002T08A006
,
American Society of Mechanical Engineers
, ASME Paper No. 93-GT-074.
10.
Gasser
,
A.
,
Backes
,
G.
,
Kelbassa
,
I.
,
Weisheit
,
A.
, and
Wissenbach
,
K.
,
2010
, “
Laser Additive Manufacturing: Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) in Turbo-engine Applications
,”
Laser Tech. J.
,
7
(
2
), pp.
58
63
.
11.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
,
1998
, “
Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,”
ASME J. Turbomach.
,
120
(
1
), pp.
20
27
.
12.
Zhang
,
Q.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Trindade
,
R.
, and
Sreekanth
,
S.
,
2005
, “
Influence of Surface Roughness on the Aerodynamic Losses of a Turbine Vane
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
568
578
.
13.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part II: Aerodynamic Losses
,”
ASME J. Turbomach.
,
134
(
4
), p.
041007
.
14.
Montis
,
M.
,
Niehuis
,
R.
, and
Fiala
,
A.
,
2010
, “
Effect of Surface Roughness on Loss Behavior, Aerodynamic Loading and Boundary Layer Development of a Low-Pressure Gas Turbine Airfoil
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol. 44021, pp.
1535
1547
, ASME Paper No. GT2010-23317.
15.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
449
457
.
16.
Jeong
,
H.
, and
Song
,
S. J.
,
2022
, “
Surface Roughness Impact on Boundary Layer Transition and Loss Mechanisms Over a Flat-Plate Under a Low-Pressure Turbine Pressure Gradient
,”
ASME J. Turbomach.
,
144
(
1
), p.
011005
.
17.
Stieger
,
R. D.
,
2002
, “
The Effects of Wakes on Separating Boundary Layers in Low-Pressure Turbines
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, England
.
18.
Jeong
,
H.
,
Lee
,
S. W.
, and
Song
,
S. J.
,
2019
, “
Measurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
074501
.
19.
Hourmouziadis
,
J.
,
1989
, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series LS-167.
20.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
,
2003
, “
Conditional Sampling in a Transitional Boundary Layer Under High Freestream Turbulence Conditions
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
28
37
.
21.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.
22.
Blackwelder
,
R. F.
, and
Eckelmann
,
H.
,
1979
, “
Streamwise Vortices Associated with the Bursting Phenomenon
,”
J. Fluid Mech.
,
94
(
3
), pp.
577
594
.
23.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
24.
Saric
,
W. S.
,
Reed
,
H. L.
, and
White
,
E. B.
,
2003
, “
Stability and Transition of Three-Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
413
440
.
25.
Kuester
,
M. S.
, and
White
,
E. B.
,
2015
, “
Roughness Receptivity and Shielding in a Flat Plate Boundary Layer
,”
J. Fluid Mech.
,
777
, pp.
430
460
.
26.
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2011
, “
Interaction of Viscous and Inviscid Instability Modes in Separation-Bubble Transition
,”
Phys. Fluids
,
23
(
12
), p.
124102
.
27.
Hain
,
R.
,
Kahler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
28.
Dähnert
,
J.
,
Lyko
,
C.
, and
Peitsch
,
D.
,
2012
, “
Transition Mechanisms in Laminar Separated Flow Under Simulated Low Pressure Turbine Aerofoil Conditions
,”
ASME J. Turbomach.
,
135
(
1
), p.
011007
.
29.
Marxen
,
O.
, and
Henningson
,
D. S.
,
2011
, “
The Effect of Small-Amplitude Convective Disturbances on the Size and Bursting of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
671
, pp.
1
33
.
30.
Shin
,
J. H.
, and
Song
,
S. J.
,
2014
, “
Pressure Gradient Effects on Smooth- and Rough-Surface Turbulent Boundary Layers—Part II: Adverse Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011204
.
You do not currently have access to this content.