Abstract

In this article, the role of mineral composition was assessed for Air Force Research Laboratory Test Dust (AFRL), for deposition in a realistic gas turbine engine environment. Experiments were performed on an effusion cooling test article with a coolant flow temperature of 894 K and surface temperature of 1144 K. Aerosolized dust with a 0–10 µm particle size distribution was delivered to the test article. The mineral recipe of AFRL was altered such that the presence of each of the five components ranged from 0% to 100%, and capture efficiency, hole capture efficiency, blockage per gram, and normalized deposit height were reported. Results are compared to a previous study of the intermineral synergies in an impingement cooling jet at the same temperature conditions. Despite differences in experimental facility flow geometry, overall agreement was found between the trends in the deposition behavior of the dust blends. The strong deposition effects that were observed were shown to be related to adhesion forces of particles, mechanical properties, and chemical properties of the dust minerals. Supplemental testing was performed in a high-temperature (1425–1650 K) impinging jet (200–260 m/s) to evaluate mineral effects at hot gas path conditions. Capture efficiency and morphology of dust deposits are reported. The capture efficiency in this regime was shown to correlate well with temperature, with chemical effects being secondary. An attempt was made to predict capture efficiency using chemical assessments such as a ratio of bases to acids, Ca:Si ratio, and optical basicity with only modest success.

References

1.
Wood
,
C. A.
,
Slater
,
S. L.
,
Zonneveldt
,
M.
,
Thornton
,
J.
,
Armstrong
,
N.
, and
Antoniou
,
R. A.
,
2017
, “
Characterisation of Dirt, Dust and Volcanic Ash: A Study on the Potential for Gas Turbine Engine Degradation
,” DST-Group-TR-3367,
Australian Government Department of Defence
,
Victoria, Australia
.
2.
Borom
,
M. P.
,
Johnson
,
C. A.
, and
Peluso
,
L. A.
,
1996
, “
Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
86–87
(Part 1), pp.
116
126
.
3.
Elms
,
J.
,
Pawley
,
A.
,
Bojdo
,
N.
,
Jones
,
M.
, and
Clarkson
,
R.
,
2021
, “
Formation of High-Temperature Minerals From an Evaporite-Rich Dust in Gas Turbine Engine Ingestion Tests
,”
ASME J. Turbomach.
,
143
(
6
), p.
061003
.
4.
Nied
,
E. P.
,
Bons
,
J. P.
, and
Lundgreen
,
R. K.
,
2023
, “
Unpacking Intermineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet
,”
ASME J. Turbomach.
,
145
(
5
), p.
051015
.
5.
Wang
,
L.
,
Guo
,
L.
,
Li
,
Z.
,
Peng
,
H.
,
Ma
,
Y.
,
Gong
,
S.
, and
Guo
,
H.
,
2015
, “
Protectiveness of Pt and Gd2Zr2O7 Layers on EB-PVD YSZ Thermal Barrier Coatings Against Calcium–Magnesium–Alumina–Silicate (CMAS) Attack
,”
Ceram. Int.
,
41
(
9
), pp.
11662
11669
.
6.
Krause
,
A. R.
,
Garces
,
H. F.
,
Senturk
,
B. S.
, and
Padture
,
N. P.
,
2014
, “
2ZrO2 · Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part II, Interactions With Sand and Fly Ash
,”
J. Am. Ceram. Soc.
,
97
(
12
), pp.
3950
3957
.
7.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
8.
Ericks
,
A. R.
,
Zok
,
F. W.
,
Poerschke
,
D. L.
, and
Levi
,
C. G.
,
2022
, “
Protocol for Selecting Exemplary Silicate Deposit Compositions for Evaluating Thermal and Environmental Barrier Coatings
,”
J. Am. Ceram. Soc.
,
105
(
6
), pp.
3665
3688
.
9.
Song
,
W.
,
Lavallée
,
Y.
,
Hess
,
K.-U.
,
Kueppers
,
U.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2016
, “
Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions
,”
Nat. Commun.
,
7
(
1
), p.
10795
.
10.
Phelps
,
A.
, and
Pfledderer
,
L.
,
2014
, “
Development of a Naturalistic Test Media for Dust Ingestion CMAS Testing of Gas Turbine Engines
,”
Thermal Barrier Coatings IV
,
Kona, HI
,
June 22–27
.
11.
Crowe
,
E. D.
, and
Bons
,
J. P.
,
2019
, “
Effects of Dust Composition on Particle Deposition in an Effusion Cooling Geometry
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
.
12.
Wolff
,
T.
,
Bowen
,
C.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,”
AIAA SciTech 2018
,
Kissimmee, FL
, Paper No. AIAA-2018-0391.
13.
Mindat.org
, “
Halite: Mineral Information, Data and Localities
,” https://www.mindat.org/min-1804.html, Accessed January 6, 2023.
14.
Whitaker
,
S. M.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
.
15.
Bons
,
J. P.
,
Lo
,
C.
,
Nied
,
E.
, and
Han
,
J.
,
2022
, “
The Effect of Gas and Surface Temperature on Cold-Side and Hot-Side Turbine Deposition
,”
ASME J. Turbomach.
,
144
(
12
), p.
121013
.
16.
Laycock
,
R. G.
, and
Fletcher
,
T. H.
,
2013
, “
Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021003
.
17.
Giehl
,
C.
,
Brooker
,
R. A.
,
Marxer
,
H.
, and
Nowak
,
M.
,
2017
, “
An Experimental Simulation of Volcanic Ash Deposition in Gas Turbines and Implications for Jet Engine Safety
,”
Chem. Geol.
,
461
, pp.
160
170
.
18.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2019
, “
Modeling Deposition in Turbine Cooling Passages With Temperature-Dependent Adhesion and Mesh Morphing
,”
ASME J. Turbomach.
,
141
(
7
), p.
071010
.
19.
Bowling
,
R. A.
,
1988
, “A Theoretical Review of Particle Adhesion,”
Particles on Surfaces 1
,
K. L.
Mittal
, ed.,
Springer US
,
Boston, MA
, pp.
129
142
.
20.
Rhodes
,
M.
, ed.,
2008
,
Introduction to Particle Technology
,
Wiley
,
New York
.
21.
Pinon
,
A. V.
,
Wierez-Kien
,
M.
,
Craciun
,
A. D.
,
Beyer
,
N.
,
Gallani
,
J. L.
, and
Rastei
,
M. V.
,
2016
, “
Thermal Effects on van Der Waals Adhesive Forces
,”
Phys. Rev. B
,
93
(
3
), p.
035424
.
22.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2009
, “
Effect of Blowing Ratio on Syngas Flyash Particle Deposition on a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–22
, pp.
225
239
.
23.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
.
24.
Kleinhans
,
U.
,
Wieland
,
C.
,
Babat
,
S.
,
Scheffknecht
,
G.
, and
Spliethoff
,
H.
,
2017
, “
Ash Particle Sticking and Rebound Behavior: A Mechanistic Explanation and Modeling Approach
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2341
2350
.
25.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
26.
Plewacki
,
N.
,
Gnanaselvam
,
P.
, and
Bons
,
J. P.
,
2020
, “
The Effect of Elevated Temperatures on Airborne Particle Deposition and Rebounds
,”
AIAA Scitech 2020 Forum, Presented at AIAA SciTech 2020
,
Orlando, FL
,
Jan. 6–10
, Paper No. AIAA-2020-1576.
27.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2020
, “
An Experimental and Computational Investigation of Absolute Pressure Effects on Deposition in an Effusion Cooling Geometry
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
, Paper No. GT2020-15632.
28.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
An Energy-Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.
29.
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2012
, “
An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092002
.
30.
International Gem Society
, “Gemstone Hardness and Wearability,”
International Gem Society
, https://www.gemsociety.org/article/hardness-and-wearability/, Accessed April 10, 2023.
31.
Bergström
,
L.
,
1997
, “
Hamaker Constants of Inorganic Materials
,”
Adv. Colloid Interface Sci.
,
70
, pp.
125
169
.
32.
Vassilev
,
S. V.
,
Baxter
,
D.
, and
Vassileva
,
C. G.
,
2014
, “
An Overview of the Behaviour of Biomass During Combustion: Part II. Ash Fusion and Ash Formation Mechanisms of Biomass Types
,”
Fuel
,
117
, pp.
152
183
.
33.
webmineral.com
, “
Quartz Mineral Data
,” http://webmineral.com/data/Quartz.shtml#.Y5FFbKjMIuU, Accessed December 7, 2022.
34.
webmineral.com
, “
Gypsum Mineral Data
,” http://webmineral.com/data/Gypsum.shtml#.ZDRLN93MJPY, Accessed April 10, 2023.
35.
Telford
,
W. M.
,
Geldart
,
L. P.
, and
Sheriff
,
R. E.
,
1990
,
Applied Geophysics
,
Cambridge University Press
,
Cambridge, UK
.
36.
webmineral.com
, “
Albite Mineral Data
,” http://webmineral.com/data/Albite.shtml#.Y5FGBKjMIuU, Accessed December 7, 2022.
37.
Guven
,
O.
,
Can
,
M.
, and
Karaguzel
,
C.
,
2022
, “
The Effect of NaCl Concentration on the Interaction Energy Between Feldspar Minerals
,”
Physicochem. Probl. Miner. Process.
,
58
(
5
), p.
151031
.
38.
mindat.org
, “
Albite: Mineral Information, Data and Localities
,” https://www.mindat.org/min-96.html, Accessed January 6, 2023.
39.
Geology.com
, “
Dolomite Mineral | Uses and Properties
,” https://geology.com/minerals/dolomite.shtml, Accessed January 6, 2023.
40.
Lee
,
R. J.
, and
Fan
,
L.-S.
,
1993
, “
The Effect of Solid Interaction Forces on Pneumatic Handling of Sorbent Powders
,”
AIChE J.
,
39
(
6
), pp.
1018
1029
.
41.
Yan
,
Z.
,
Wang
,
Z.
,
Liu
,
H.
,
Tu
,
Y.
,
Yang
,
W.
,
Zeng
,
H.
, and
Qiu
,
J.
,
2015
, “
Decomposition and Solid Reactions of Calcium Sulfate Doped With SiO2, Fe2O3 and Al2O3
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
491
498
.
42.
Olszak-Humienik
,
M.
, and
Jablonski
,
M.
,
2015
, “
Thermal Behavior of Natural Dolomite
,”
J. Therm. Anal. Calorim.
,
119
(
3
), pp.
2239
2248
.
43.
Winegartner
,
E. C.
, and
Rhodes
,
B. T.
,
1975
, “
An Empirical Study of the Relation of Chemical Properties to Ash Fusion Temperatures
,”
ASME J. Eng. Power
,
97
(
3
), pp.
395
403
.
44.
Duffy
,
J. A.
, and
Ingram
,
M. D.
,
1976
, “
An Interpretation of Glass Chemistry in Terms of the Optical Basicity Concept
,”
J. Non-Cryst. Solids
,
21
(
3
), pp.
373
410
.
You do not currently have access to this content.