Abstract

Knowledge of heat transfer in fuel wetted passages is important for informing injector design and life estimates due to the effects of temperature on fuel degradation. Future injectors will be manufactured using additive methods in an effort to reduce production costs and time, while also facilitating more agile design practices. Additive manufacturing (AM) is known to result in increased surface roughness compared to conventional manufacturing techniques, however limited data exist on how this roughness impacts heat transfer, particularly in liquid flows. This paper solves the inverse heat conduction problem for heat transfer coefficient in liquid flows through rough 90 deg channel bends typical of the pilot gallery in a lean direct-injection fuel spray nozzle. Heat transfer distributions across two rough surfaces are compared to an equivalent smooth surface. The two rough surfaces have different morphologies but have the same relative effective sand grain roughness which is matched to a prototype AM fuel injector. The sand grain roughness is predicted from a correlation that has been adapted for the high relative roughness scales characteristic of additively manufactured fuel passages. The effective sand grain roughness estimated from surface measurements of a prototype AM fuel gallery was 13% of the passage hydraulic diameter. For the two rough surfaces, the heat transfer enhancement is up to three times the smooth surface value for the straight section preceding the bend and up to four times around the bend. Heat transfer distributions across the two rough surfaces are similar, but the magnitudes differ by 17% depending on the surface morphology. This highlights the importance of the heat transfer effectiveness of surface features, which unlike the sand grain roughness is not matched for the two surfaces considered. Adjusting the data for differences in heat transfer effectiveness corrects the average heat transfer for the rough surfaces to within 7%.

References

1.
Kuprowicz
,
N. J.
,
Zabarnick
,
S.
,
West
,
Z. J.
, and
Ervin
,
J. S.
,
2007
, “
Use of Measured Species Class Concentrations With Chemical Kinetic Modeling for the Prediction of Autoxidation and Deposition of Jet Fuels
,”
Energy Fuels
,
21
(
2
), pp.
530
544
.
2.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y. G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.
3.
Walker
,
T. D.
,
Peacock
,
G. L.
,
Brend
,
M. A.
,
Bonham
,
C.
, and
Masters
,
J. D.
,
2022
, “
Heat Transfer and Residence Time in Lean Direct Injection Fuel Galleries
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051001
.
4.
Stickles
,
R. W.
,
Dodds
,
W. J.
,
Koblish
,
T. R.
,
Sager
,
J.
, and
Shetty
,
D. K.
,
1993
, “
Innovative High-Temperature Aircraft Engine Fuel Nozzle Design
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
439
446
.
5.
Gebisa
,
A. W.
, and
Lemu
,
H. G.
,
2018
, “
Additive Manufacturing for the Manufacture of Gas Turbine Engine Components: Literature Review and Future Perspectives
,” ASME Paper No. GT2018-76686.
6.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
7.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Additive Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014003
.
8.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2017
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
.
9.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
10.
Nikuradse
,
J.
,
1933
, “
Laws of Flow in Rough Pipes
,” Tech. Rep.
11.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,”
Ingenieur-Archiv
,
7
(
1
), pp.
1
34
.
12.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
13.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
671
677
.
14.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
AMSE J. Fluids Eng.
,
132
(
4
), p.
0412031
.
15.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.
16.
Gioia
,
G.
, and
Chakraborty
,
P.
,
2006
, “
Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory
,”
Phys. Rev. Lett.
,
96
(
4
), p.
044502
.
17.
Hanson
,
D. R.
,
McClain
,
S. T.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2019
, “
Flow in a Scaled Turbine Coolant Channel With Roughness Due to Additive Manufacturing
,” ASME Paper No. GT2019-90931.
18.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using ‘Ra’ to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003:1
.
19.
Grimmond
,
C. S. B.
, and
Oke
,
T. R.
,
1999
, “
Aerodynamic Properties of Urban Areas Derived From Analysis of Surface Form
,”
J. Appl. Meteorol.
,
38
(
9
), pp.
1262
1292
.
20.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw Hill
,
New York
.
21.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting’s Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
60
65
.
22.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
590
596
.
23.
Bogard
,
S.
,
1998
, “
Characterisation and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
, pp.
337
342
.
24.
Çengel
,
Y. A.
,
2018
,
Fluid Mechanics: Fundamentals and Applications
, 4th ed.,
McGraw Hill
,
New York
.
25.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R. H.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
.
26.
Bonham
,
C.
,
Brend
,
M.
,
Spencer
,
A.
,
Tanimizu
,
K.
, and
Wise
,
D.
,
2018
, “
Impact of Flow Unsteadiness on Steady-State Gas-Path Stagnation Temperature Measurements
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122602
.
27.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2911
2919
.
28.
Polak
,
E.
, and
Ribière
,
G.
,
1969
, “
Note sur la convergence de méthodes de directions conjuguées
,”
Rev. Française Informat Rech. Opérationelle
,
3
(
1
), pp.
35
43
.
29.
Chung
,
D.
,
Hutchins
,
N.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2021
, “
Predicting the Drag of Rough Surfaces
,”
Annu. Rev. Fluid Mech.
,
53
, pp.
439
471
.
30.
Çengel
,
Y. A.
,
2014
,
Heat and Mass Transfer: Fundamentals and Applications
, 5th ed.,
McGraw Hill
,
New York
.
You do not currently have access to this content.