Abstract

Modern civil jet engines arrange components on spools with different rotational speeds in order to improve compressor stall margin, overall engine performance, etc. The unsteady interactions among these components can be significant and should be considered at an early design stage if possible. Unsteady Reynolds-averaged Navier–Stokes (URANS) is a common approach to simulate these unsteady effects, but the disparity in time scales in a multispool simulation can lead to expensive URANS simulations. Harmonic methods are effective and efficient approaches to simulate unsteady interactions among turbomachinery components, but their applications to multispool simulations remain a challenge. The objective of this paper is to address this challenge. This paper extends the Favre-averaged non-linear harmonic method to simulate multispool turbomachinery components using a unified bladerow interface which transfers disturbances through bladerows with arbitrary blade counts at any rotational speed. The regularization of non-reflective boundary condition is described for certain circumferential wave number of the zero-frequency mode. The capability of the proposed approach is demonstrated by simulating the transfer of hot streaks through full 3D high- and intermediate-pressure turbines in a three-shaft engine. The temperature distributions from the harmonic method show good agreement with direct unsteady simulation in terms of the mean flow and the instantaneous flow. The radial migration of the hot streaks towards the hub are captured very well by the proposed harmonic method. The required wall-clock time of the harmonic method is roughly 240 times smaller than the whole annulus URANS simulation. This demonstrates that the proposed method can be an efficient design tool to trace hot streaks in multispool turbines at the early design stage.

References

1.
Hall
,
K. C.
, and
Crawley
,
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA J.
,
27
(
6
), pp.
777
787
.
2.
Clark
,
W. S.
, and
Hall
,
K. C.
,
1999
, “
A Time-Linearized Navier–Stokes Analysis of Stall Flutter
,”
ASME J. Turbomach.
,
122
(
3
), pp.
467
476
.
3.
Hall
,
K. C.
, and
Ekici
,
K.
,
2005
, “
Multistage Coupling for Unsteady Flows in Turbomachinery
,”
AIAA J.
,
43
(
3
), pp.
624
632
.
4.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
5.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
6.
Wang
,
F.
, and
di Mare
,
L.
,
2019
, “
Favre-Averaged Nonlinear Harmonic Method for Compressible Periodic Flows
,”
AIAA J.
,
57
(
3
), pp.
1133
1142
.
7.
Vasanthakumar
,
P.
,
2003
, “Three Dimensional Frequency-Domain Solution Method For Unsteady Turbomachinery Flows,” PhD thesis,
Durham University
,
Durham, UK
.
8.
Vilmin
,
S.
,
Lorrain
,
E.
,
Debrabandere
,
F.
,
Tartinville
,
B.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2013
, “
The Nonlinear Harmonic Method Applied to the Combined Effects of Multi-Row Unsteady Flows
,”
Volume 6C: Turbomachinery
,
San Antonio, TX
,
June 3–7
,
American Society of Mechanical Engineers
, p. V06CT42A020.
9.
Wang
,
F.
,
di Mare
,
L.
, and
Adami
,
P.
,
2019
, “
Favre-Averaged Fourier-Based Methods for Gas Turbine Flows
,”
Volume 2C: Turbomachinery
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
, p. V02CT41A024.
10.
Wang
,
F.
, and
di Mare
,
L.
,
2020
, “
Efficient Approach for Simulating Aperiodic Flows Due to Geometry Distortions
,”
AIAA J.
,
58
(
3
), pp.
1278
1291
.
11.
Wang
,
F.
, and
di Mare
,
L.
,
2021
, “
Analysis of Transonic Bladerows With Non-uniform Geometry Using the Spectral Method
,”
ASME J. Turbomach.
,
143
(
12
), p.
121012
.
12.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
Volume 2B: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
,
American Society of Mechanical Engineers
, p. V02BT39A005.
13.
He
,
L.
,
Chen
,
T.
,
Wells
,
R. G.
,
Li
,
Y. S.
, and
Ning
,
W.
,
2002
, “
Analysis of Rotor–Rotor and Stator–Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
,
124
(
4
), pp.
564
571
.
14.
Wang
,
F.
, and
di Mare
,
L.
,
2022
, “
Computation of Multistage Flows Using a Fourier Approach
,”
AIAA J.
,
60
(
1
), pp.
345
359
.
15.
Romagnosi
,
L.
,
Li
,
Y.
,
Mezine
,
M.
,
Teixeira
,
M.
,
Vilmin
,
S.
,
Anker
,
J. E.
,
Claramunt
,
K.
,
Baux
,
Y.
, and
Hirsch
,
C.
,
2019
, “
A Methodology for Steady and Unsteady Full-Engine Simulations
,”
Volume 2C: Turbomachinery
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
, p. V02CT41A002.
16.
Favre
,
A.
,
1965
, “The Equation of Compressible Turbulent Gases,” Tech. Rep. AD0622097, Aix-Marseille University.
17.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
18.
Wang
,
F.
,
Carnevale
,
M.
, and
di Mare
,
L.
,
2018
, “
Numerical Study of Deterministic Fluxes in Compressor Passages
,”
ASME J. Turbomach.
,
140
(
10
), p.
101005
.
19.
Kersken
,
H.-P.
,
Ashcroft
,
G.
,
Frey
,
C.
,
Wolfrum
,
N.
, and
Korte
,
D.
,
2014
, “
Nonreflecting Boundary Conditions for Aeroelastic Analysis in Time and Frequency Domain 3D RANS Solvers
,”
Volume 2B: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
,
American Society of Mechanical Engineers
, p. V02BT39A010.
20.
Giles
,
M.
,
1988
, “Non-Reflecting Boundary Conditions for the Euler Equations,” Tech. Rep. CFDL-TR-88-1, MIT.
21.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1993
, “
Quasi-Three-Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations
,”
J. Propul. Power
,
9
(
2
), pp.
263
271
.
22.
Hall
,
K. C.
, and
Crawley
,
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the L Inearized Euler Equations
,”
AIAA J.
,
27
(
6
), pp.
777
787
.
23.
Frey
,
C.
, and
Kersken
,
H.-P.
,
2016
, “
On the Regularisation of Non-reflecting Boundary Conditions Near Acoustic Resonance
,”
Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016)
,
Crete Island, Greece
,
June 5–10
, pp.
7435
7453
.
24.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “Axial Flow Compressor Noise Studies,” SAE Technical Paper Series, SAE International.
25.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D.
,
2016
, “
Virtual Gas Turbine: Pre-processing and Numerical Simulations
,”
Proceedings of ASME TurboExpo
,
Seoul, South Korea
,
June 13–17
,
ASME
, p. V001T01A009.
26.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
10th Computational Fluid Dynamics Conference
,
Honolulu, HI
,
June 24–26
,
American Institute of Aeronautics and Astronautics
, pp.
1
13
.
27.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
28.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
29.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
30.
Wang
,
F.
,
Carnevale
,
M.
,
di Mare
,
L.
, and
Gallimore
,
S.
,
2017
, “
Simulation of Multistage Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
2
), p.
021011
.
31.
Cai
,
X.-C.
, and
Sarkis
,
M.
,
1999
, “
A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems
,”
SIAM J. Sci. Comput.
,
21
(
2
), pp.
792
797
.
32.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Benson
,
S.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
, et al.,
2021
, “PETSc/TAO Users Manual,” Tech. Rep. ANL-21/39—Revision 3.16, Argonne National Laboratory.
33.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2011
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
.
34.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
,
2004
, “
Influence of Hot Streak Circumferential Length-Scale in Transonic Turbine Stage
,”
Volume 5: Turbo Expo 2004, Parts A and B
,
Vienna, Austria
,
June 4–17
, ASMEDC, pp.
1117
1126
.
35.
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Mesh Generation for Turbomachinery Blade Passages With Three-Dimensional Endwall Features
,”
J. Propul. Power
,
33
(
6
), pp.
1459
1472
.
36.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
37.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
,
1973
, “
Generalized Expressions for Secondary Vorticity Using Intrinsic Co-ordinates
,”
J. Fluid Mech.
,
59
(
1
), pp.
97
115
.
38.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
,
1970
, “
Intra-stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
J. Eng. Power
,
92
(
4
), pp.
359
368
.
39.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
3
), pp.
544
553
.
40.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
41.
Zante
,
D. E. V.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
.
You do not currently have access to this content.