Abstract

Flow statistic in the mid-plane of a rectangular channel with diamond-s pin fins was obtained by means of particle imaging velocimetry at Re = 10,000. Large-scale and small-scale fluctuations were separated using proper orthogonal decomposition. The flow characteristics were compared to the Nusselt number distribution on the endwall acquired by thermochromic liquid crystal to reveal the flow mechanism driving heat transfer enhancement. Results indicate that local vorticity plays an important role in strengthening Nu on both sides of leading point (Zone 1). Downstream of the two sharp edges on both sides (Zone 2), small size disturbances from shear layer eddies drive local heat transfer. The flow characteristics and heat transfer distribution downstream of the first row (Zone 3) present alternated feature along Y direction due to the interaction between shear layers of neighboring pin fins. Lateral velocity fluctuation induced by large vortex shedding drives the heat transfer augmentation in Zone 3 where there is violent large vortex shedding. Meanwhile, small size disturbances of the shear layer drive local heat transfer enhancement in Zone 3 downstream of pin fins where large vortex shedding is suppressed. For the second and third rows, there is no difference in the flow characteristics downstream of neighboring pin fins. Small-size fluctuations distributed uniformly downstream of large vortex shedding (Zone 4) resulting in a uniformly distributed Nu.

References

1.
Huang
,
S.-C.
,
Wang
,
C.-C.
, and
Liu
,
Y.-H.
,
2017
, “
Heat Transfer Measurement in a Rotating Cooling Channel With Staggered and Inline Pin-Fin Arrays Using Liquid Crystal and Stroboscopy
,”
Int. J. Heat Mass Transfer
,
115
, pp.
364
376
.
2.
Maji
,
A.
,
Bhanja
,
D.
, and
Patowari
,
P. K.
,
2017
, “
Numerical Investigation on Heat Transfer Enhancement of Heat Sink Using Perforated Pin Fins With Inline and Staggered Arrangement
,”
Appl. Therm. Eng.
,
125
, pp.
596
616
.
3.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Daimond Shaped Elements
,” ASME Paper No. GT2007-28306.
4.
Siw
,
S. C.
,
Fradeneck
,
A. D.
, and
Chyu
,
M. K.
,
2015
, “
The Effects of Different Pin-Fin Arrays on Heat Transfer and Pressure Loss in a Narrow Channel
,” ASME Paper No. GT2015-43855.
5.
Chyu
,
M. K.
,
Siw
,
S. C.
, and
Moon
,
H. K.
,
2009
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,” ASME Paper No. GT2009-59814.
6.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Effect of Streamwise Spacing on Periodic and Random Unsteadiness in a Bundle of Short Cylinders Confined in a Channel
,”
Exp. Fluids
,
53
(
6
), pp.
1779
1796
.
7.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Effects of Varying Streamwise and Spanwise Spacing in Pin-Fin Arrays
,” ASME Paper No. GT2012-68127.
8.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
,
2006
, “
Performance Comparison of Pin Fin in-Duct Flow Arrays With Various Pin Cross-Sections
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1176
1192
.
9.
Jin
,
W.
,
Wu
,
J.
,
Jia
,
N.
,
Lei
,
J.
,
Ji
,
W.
, and
Xie
,
G.
,
2021
, “
Effect of Shape and Distribution of Pin-Fins on the Flow and Heat Transfer Characteristics in the Rectangular Cooling Channel
,”
Int. J. Therm. Sci.
,
161
, p.
106758
.
10.
Wang
,
Z.
,
Yin
,
Y.
,
Bu
,
S.
,
Luan
,
Y.
, and
Magagnato
,
F.
,
2021
, “
Performance Improvement of Trailing Edge Internal Cooling With Drop-Shaped Pin Fin Array
,”
J. Aerosp. Eng.
,
34
(
3
), p.
04021013
.
11.
Nuntakulamarat
,
M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2020
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
.
12.
Wright
,
L. M.
,
Chen
,
A. F.
,
Wu
,
H.-W.
,
Han
,
J.-C.
,
Lee
,
C.-P.
,
Azad
,
S.
, and
Um
,
J.
,
2021
, “
Heat Transfer Enhancement in a Rectangular Cooling Channel With Airfoil Shaped Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041026
.
13.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2012
, “
Heat Transfer Enhancement of Internal Cooling Passage With Triangular and Semi-Circular Shaped Pin-Fin Arrays
,” ASME Paper No. GT2012-69266.
14.
Ferster
,
K. K.
,
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Effects of Geometry, Spacing, and Number of Pin Fins in Additively Manufactured Microchannel Pin Fin Arrays
,”
ASME J. Turbomach.
,
140
(
1
), p.
011007
.
15.
Xia
,
G.
,
Chen
,
Z.
,
Cheng
,
L.
,
Ma
,
D.
,
Zhai
,
Y.
, and
Yang
,
Y.
,
2017
, “
Micro-PIV Visualization and Numerical Simulation of Flow and Heat Transfer in Three Micro Pin-Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
119
, pp.
9
23
.
16.
Xie
,
H.
,
Yang
,
B.
,
Zhang
,
S.
, and
Song
,
M.
,
2020
, “
Research on the Mechanism of Heat Transfer Enhancement in Microchannel Heat Sinks With Micropin Fins
,”
Int. J. Energy Res.
,
44
(
4
), pp.
3049
3065
.
17.
Xu
,
J.
,
Zhang
,
K.
,
Duan
,
J.
,
Lei
,
J.
, and
Wu
,
J.
,
2021
, “
Systematic Comparison on Convective Heat Transfer Characteristics of Several Pin Fins for Turbine Cooling
,”
Crystals
,
11
(
8
), p.
977
.
18.
Hossain
,
M. A.
,
Ameri
,
A.
, and
Bons
,
J.
,
2021
, “
Conjugate Heat Transfer Study of Innovative Pin-Fin Cooling Configuration
,”
J. Propul. Power
,
37
(
4
), pp.
604
614
.
19.
Armellini
,
A.
,
Casarsa
,
L.
, and
Giannattasio
,
P.
,
2010
, “
Low Reynolds Number Flow in Rectangular Cooling Channels Provided With Low Aspect Ratio Pin Fins
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
689
701
.
20.
Duan
,
J.
,
Zhang
,
K.
,
Xu
,
J.
,
Lei
,
J.
, and
Wu
,
J.
,
2022
, “
Investigation on the Contribution of Large-Scale Fluctuation and Small-Scale Disturbance of Coolant to Heat Transfer Enhancement in a Rectangular Channel With Pin Fins
,”
ASME J. Turbomach.
,
144
(
7
), p.
071014
.
21.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
700
706
.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
36310
, pp.
3
8
.
23.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
7
), pp.
S51
S60
.
24.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
, 3rd ed.,
Springer International Publishing AG, Part of Springer Nature
,
Switzerland
.
25.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J.-C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90 Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(2
4
), pp.
4809
4822
.
26.
Otto
,
M.
,
Gupta
,
G.
,
Tran
,
P. K.
,
Ghosh
,
S.
, and
Kapat
,
J. S.
,
2021
, “
Investigation of Endwall Heat Transfer in Staggered Pin Fin Arrays
,”
ASME J. Turbomach.
,
143
(
2
), p.
021009
.
You do not currently have access to this content.